

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

Vehicle Type Classification via Adaptive Feature Clustering for Traffic Surveillance Video

Shu Wang

B10010418@njupt.edu.cn

College of Telecommunications & Information Engineering Nanjing University of Posts & Telecommunications

> Yangzhou 14th October, 2016

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

Contents

Introduction

What is the problem?

Our proposed method

Analysis of Experiments

Conclusion

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

Introduction

Vehicle type classification has become a significant task in machine learning because of its potential applications

- Intelligent Traffic Systems
- Autonomous Driving Systems

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

Introduction

In this paper, a novel method is proposed to handle this task in the real road traffic surveillance video.

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

Challenges

Challenges

- low-resolution surveillance cameras
- different road conditions
- varying illumination conditions
- different camera viewpoints
- · vehicles: colors, postures, manufacturers

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

Traditional Methods

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

Problems

Problems

- It is hard to collect training samples under every circumstances
- Traditional methods fail to adapt to different situations in the real surveillance.

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

Defination

Naturally, according to the vehicle size, vehicles can be divided into 3 categories:

- compact cars (sedans, taxes)
- mid-size cars (vans)
- heavy-duty vehicles (buses, trucks)

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

Proposed Method

The algorithm has four steps

- Vehicle Detection and Dataset Generation
- Feature Extraction
- Unsupervised Learning
- Recognition and Classification

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

Flowchart

More Details - Vehicle Detection

Vehicle Detection

1.Set ROI

limit the vehicle images to a suitable size range

Introduction What is the problem? Our proposed method

Analysis of Experiments Conclusion

- guarantee the integrity of vehicles
- · decrease the detection area

2.Fast-RCNN

• output accurate vehicle coordinates

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

More Details - Feature Extraction

Feature Extraction

- Features from Deep Network
- Priori Features
- Feature Fusion

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

More Details - Feature Extraction

Features from Deep Network

use the weights in the front fully-connected layers as the filters to extract features.

$$feature_1 = g(\boldsymbol{W} \cdot \boldsymbol{x} + \boldsymbol{b})$$

where $g(\mathbf{x}) = (1 + exp(-\mathbf{x}))^{-1}$ is the sigmoidal activation function.

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

More Details - Feature Extraction

Priori Features

$$feature_2 = \underset{j}{\operatorname{argmax}}(o_j) - 2, \quad j = 1, 2, 3$$

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

More Details - Feature Extraction

merge two features together according to the queue model.

$$f^{(i)} = [feature_1^{(i)}, \lambda \cdot feature_2^{(i)}]$$

where $f^{(i)}$ is the features of the *i*-th vehicle image in dataset λ is a positive parameter

Introduction What is the problem? **Our proposed method** Analysis of Experiments Conclusion

Nanjing University of Posts & Telecom.

More Details - Recognition and Classification

Recognition and Classification

Finally, vehicle type will be recognized according to the closest distance principal.

$$r = \underset{k}{\operatorname{argmax}} ||f - c_k||, \quad k = 1, 2, 3$$

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

Experimental Environment

Training Environment

Sugon I450, with NVIDIA Telsa K20C for GPU parallel computing. 21296 images (with 10000 negative samples) for training CNN network. 13860 images for training ELM network.

Testing Environment

Visual Studio 2013 environment in Core i5, 3.2GHz CPU with 8-GB RAM.

Introduction Analysis of Experiments

Vehicle Detection

(a) daylight

(b) night

(c) rain

(d) occlusion

Specifications

PARAMETER	VALUE	UNIT
Detection Rate	98.63	%
Error Detection Rate	<0.1	%
Training Time	10.58	hour
Testing Time (GPU)	1.5	s/frame
Testing Time (CPU)	150	ms/frame

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

Vehicle Classification

Classification Results

THE VEHICLE TYPE RECOGNITION ACCURACY OF SEVERAL METHODS

Methods	Accuracy (%)
HOG+SVM[*]	81.42
HOG+ELM	82.80
The proposed method	85.56

[*] H. C. Karaimer, I. Cinaroglu, and Y. Bastanlar, Combining shape-based and gradient-based classifiers for vehicle classification, in 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Sept 2015, pp. 800-805.

(a)

(b)

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

Vehicle Classification

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

Vehicle Classification

14th October, 2016

WCSP 2016

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

Conclusion

Conclusion

- Experimental results show that clustering results can largely distinguish these three types of vehicles.
- The proposed method outperforms other traditional methods, and has a very wide application prospects.
- This framework can avoid the uncontrolled effects of environment, such as various road situations.

Introduction What is the problem? Our proposed method Analysis of Experiments Conclusion

THANKS