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Abstract—Vehicle type classification has become an important
part of intelligent traffic. However traditional methods can not
deal with the varying situations in the reality. In this paper,
a novel method is proposed to handle this task in the real
road traffic surveillance video. In order to distinguish different
vehicles, we categorize vehicles into three types: compact cars,
mid-size cars, and heavy-duty vehicles. For a certain video, our
method has four steps. First, a deep convolutional neural network
is used to detect vehicles in the candidate region and a data set
would be generated. Second, the main features of vehicles can
be extracted using a fully-connected network. Also, for the sake
of higher accuracy, weak labels given by pre-trained extreme
learning machine (ELM) are fused into the final features, adding
prior information proportionally. Third, K-means is implemented
to learn three vehicle-type cluster centers adaptively. Finally,
vehicle type will be recognized according to the closest distance
principal. Experimental results show that the recognition rate
outperforms other traditional methods, verifying the feasibility
and effectiveness of the proposed method.

Keywords—vehicle type classification; adaptive clustering; fea-
ture learning; deep learning; extreme learning machine.

I. INTRODUCTION

Vehicle detection and classification has become a significant
task in machine learning because of its potential applications,
such as intelligent traffic systems [1] and autonomous driving
systems. Besides, few vehicle types such as truck will not be
expected to appear in some particular locations, so vehicle
type classification is of value in surveillance videos which
can reduce the security risks in our daily lives. Howev-
er, it is challenging to tackle this problem because of the
complexity of surveillance videos. The difficulties of vehicle
type classification come from several aspects. First, in low-
resolution surveillance videos, the vehicle features will be hard
to extract. Because the limited size and low quality of videos
always make vehicle images textureless. Second, different
road conditions and varying illumination conditions make
the problem more complicated [2]. And surveillance cameras
sometimes have different viewpoints, increasing the difficulties
in distinguishing vehicle types. Third, vehicles belong to the
same type always have different appearances due to their
different colors, postures and manufacturers. Meanwhile, some
vehicles belong to different types are similar in appearance.

In recent years, numerous algorithms have been proposed

to tackle this task. Chen [3] introduced a feature extraction
method based on sparse learning and trained a linear SVM for
vehicle classification. Karaimer [4] also used SVM for classi-
fication, but they employed shape-based and HOG features of
vehicle images. Dynamic Bayesian Network (DBN) [5], [6]
is another effective way to classify vehicles in traffic videos,
because DBN has the ability to visualize the relationship
of random variables. Nurhadiyatna [7] proposed a real-time
vehicle classification framework using Gabor filters to extract
features. With the remarkable success of deep learning, Zhang
[8] used deep convolutional neural networks (CNN) to classify
vehicle types, which do not require the finely cropped vehicle
images. Qian [9] combined the high-layer features of deep
network and some traditional features such as local binary
patterns, and achieved high accuracy in their experiments.
Naturally, according to the vehicle size, vehicles can be
divided into three categories: compact cars (sedans, taxis),
mid-size cars (vans), and heavy-duty vehicles (buses, trucks),
which are shown in Fig. 1. Unfortunately, traditional methods
fail to adapt to different situations in real-world applications.
In this paper, we propose a more smart method for vehicle
type classification, which allows the algorithm to adaptively
deal with the varying situations in the real surveillance. When
it comes to a particular surveillance video, we firstly detect
vehicles from a region of interest (ROI) by using a deep
network based on Fast-RCNN [10]. And we can obtain a small
data set for vehicle images if the detection process is applied to
the front part of the video. Then we introduce a new method
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Fig. 1: Three different types of vehicles.
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Fig. 2: Flowchart of the proposed method.

based on neural network to extract vehicle image features,
combining a label from a pre-trained ELM [11] vehicle-type
classifier. Finally, the feature vectors are clustered into three
clusters via k-means method. It is shown that the clustering
results can largely distinguish these three types of vehicles.
As a result, we can determine the type of a vehicle in the
latter part of the video by comparing the distances between a
vehicle feature vector and three different cluster centers. Our
experimental results show that the vehicle detection rate is
over 98%, and the vehicle type recognition rate is about 2.76%
higher than some other traditional methods.

II. PROPOSED METHOD

Our proposed method can effectively classify three kinds of
vehicles in surveillance videos. The flowchart of the method
is illustrated in Fig. 2. And the algorithm has four steps.
First, vehicles can be detected from a selected ROI in a video
sequence and a small data set of vehicle images is obtained.
Second, the main vehicle-type features will be extracted from
deep network, and the weak labels obtained from a pre-trained
ELM classifier will be fused with the main features. Third, K-
means is used for unsupervised learning in high-dimensional
feature space. Finally, the last step is the identification step.

A. Vehicle Detection and Dataset Generation

Firstly, we set a fixed region of interests in a particular video
sequence. Setting ROI has several advantages such as limiting
the vehicle images to a suitable size range. Also, by setting
proper candidate regions, the detection area will be decreased
and the integrity of vehicles can be guaranteed.

Then, a pre-trained Fast-RCNN network which can output
accurate vehicle coordinates has been implemented to detect
vehicles in the selected region. And the vehicle images will
be obtained from a video frame. If the detection process is
applied to the front part of the video, a vehicle data set for the
particular video scene would be generated in order to complete
the following steps.

B. Feature Extraction

The features in this paper consist of two distinct parts: the
features excavated by deep network, and the priori features as
a form of weak labels, which we can see in Fig. 2.

(1) Features from Deep Network

From the most intuitive point of view, the main features of
vehicle types can be excavated from the global information
of vehicle images, rather than the local information. As a
result, after obtaining the accurate coordinates of vehicle
images using Fast-RCNN, we establish a fully connected
neural network to classify three different vehicle types. The
fact is that, in the fully-connected networks, the penultimate
layer outputs can largely reflect the abstract characteristics of
vehicle types, and can be used for predicting which type a
vehicle is. Therefore, we use the weights in the front fully-
connected layers as the filters to extract features.

feature; = g(W - x + b) 1)

where W denotes the weight matrix between the input
layer and the penultimate layer. b is the threshold vector. =
and feature; denote the input vector and the output features
respectively. g(z) = (1 + exp(—x))~! is the sigmoidal
activation function which normalize the data to 0-1 range.

(2) Priori Features

In order to better recognize vehicle types, a pre-trained
ELM classifier is introduced to provide weak labels as priori
features. As we can see in Fig. 3, we use cropped vehicle
images as the training samples, and extract the CNN features
[12] as the ELM input vectors.

The ELM classifier consists of three hidden layers with the
node number 512-512-2000. In the first two hidden layers, two
ELM auto-encoders are performed for unsupervised feature
representation. it is known that the auto-encoder aims to learn
a function hg(x) ~ =, which acts as some sort of feature
extractor in multi-layer learning framework [13], [14]. And in
the last hidden layer, random projection and supervised feature
classification are used for learning the final classifier.
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Fig. 3: Feature extraction and learning using ELM.

As the ELM network has three output nodes which indicate
three different types of vehicles, we translate the ELM outputs
into a weak label features, which can be denoted as the
following equation:

features = argmax(oj) -2, j=1,23 2)

J

o; denotes the j-th ELM output node. As a result, the weak
label can be three values: -1, O or +1, implying the priori
features of three vehicle types.

(3) Feature Fusion

After obtaining the features from deep network and the
priori features, we can merge them together according to the
queue model.

O = [featuregi),)\ . featureéi)] 3)

JARET the features of the :-th vehicle image in dataset, and
featuregz) and featureg) are the corresponding high-layer
features from deep network and the corresponding weak label
respectively. A is a positive parameter which can adjust the
weights between two kinds of features.

C. Unsupervised Learning

Theoretically, the fused features have the ability to make a
distinction between different vehicle types, that is to say, the
features of different vehicle types can be easily distinguished
in the high-dimensional data space. Consequently, machine
can get the vehicle type difference by unsupervised learning
with vehicle features.

Our aim is to partition the vehicle images into 3 clusters
in which all the images in one cluster belong to the same
vehicle type. K-means clustering algorithm is a feasible and
effective method to accomplish this task. Through iterative
refinement, we can obtain 3 clusters, which correspond to three
different vehicle types (compact cars, mid-size cars, heavy-
duty vehicles). For each cluster, there is a cluster center which
is denoted as ¢, k = 1,2, 3.

We find that the clustering results can largely distinguish
three types of vehicles. That is because adaptive feature learn-
ing can avoid the effects come from the outside environment.

D. Recognition and Classification

When it comes to the recognition process in the latter
part of the video, we could compare the distance between
the fused features obtained from the detection results and
three vehicle-type cluster centers obtained from unsupervised
learning. According to the shortest distance principle, if an
extracted feature is very close to certain cluster center in the
high-dimensional feature space, the vehicle with this feature
would have a close relationship with the label corresponding
to this cluster center. So, we can get the index of the closest
cluster center to the vehicle feature f, which is denoted as r.

r=argmax||f —cl|, k=1,2,3 4)
k

Then, the recognition result of a certain vehicle in the latter
part of the video would be the label which binds to the index
r.

III. EXPERIMENTAL RESULTS

The Implementation of vehicle detection and classification
algorithms on all the video sequences are carried out in Visual
Studio 2013 and Matlab R2014a environment running in Core
i5, 3.2GHZ CPU with 8-GB RAM. The training process of
Fast-RCNN and fully-connected network are implemented in
Sugon 1450, with NVIDIA Tesla K20C for GPU parallel
computing. For deep network based vehicle detection, 11,296
road surveillance images with 26,665 vehicle instances are
carefully selected for deep learning. Also, in case of the
overfitting problem in detection, 10,000 irrelevant images are
served as negative training samples. For ELM training process
in vehicle type classification, 13,860 vehicle images with 4,620
images for each vehicle type are used for learning the final
ELM network weights. Therefore, our experimental results are
based on the training with a great deal of image data.

A. Vehicle Detection

In our experiment, the model of deep neural network is
VGG_CNN_M_1024 which has a great capability to achieve
high detection rate [15]. Meanwhile, compared with VGG16
[16] or OverFeat [17], this model also has lower computational
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Fig. 4: Detection results under different situations.

complexity, making it possible for the implementation in
the real traffic surveillance. Also, for pre-processing, we use
selective search [18], [19] to generate object proposals. The
confidence threshold is set to 0.8, and the threshold of non-
maximum suppression is set to 0.3.

The detection rate of our system is 98.63% in the real
traffic videos, and the error detection rate is less than 0.1%. It
takes about 12 hours for the training process with 100,000
iterations. And in the testing process (for 1080p videos),
it takes 1.5s/frame with CPU or 150ms/frame with GPU.
Moreover, due to the generalization ability of neural networks
[20], our system performs well in various situations, such as
daylight, rain, night and occlusion, as shown in Fig. 4.

B. Vehicle Type Classification

In our experiment, the fully connected network has 3 layers,
with 128x 128 nodes in the input layer and 128 neural nodes
in the hidden layer. For the weak labels, the ELM network
takes the CNN features with 512 dimensions as inputs. Two
auto-encoders both have 512 nodes and the random projection
layer has 2000 nodes. All the node numbers are the optimal
values obtained from several experiments.

So, feature; is a 128-dimensional vector with 0-1 range,
and features is a numerical variable with value 0, +1 or -1.
The parameter of feature fusion A is set to a low value, such
as 4 or 5. As shown in Table I, the proposed framework can

TABLE I: THE VEHICLE TYPE RECOGNITION
ACCURACY OF SEVERAL METHODS

Methods Accuracy (%)
HOG+SVM [4] 81.42
HOG+ELM 82.80
The proposed method 85.56

get 85.56% accuracy in real traffic surveillance, better than
other methods with the same testing datasets.

TABLE II: THE CONFUSION TABLE BETWEEN
DIFFERENT VEHICLE TYPES

Predict o
m Compact ~ Mid-size  Heavy-duty

Compact 88.26 9.61 2.14
Mid-size 6.60 85.85 7.55
Heavy-duty 16.33 12.24 71.43

Table II further shows the confusion matrix between three
different vehicle types. As we can see, for compact vehicle
which is the most common vehicle type, the recognition
accuracy is higher than other two types. That is because
the training samples of compact cars are abundant in our
sample library, which enable the proposed model fit well with
the experimental data. However, the accuracy on heavy-duty
vehicle is relatively lower than other types, because heavy-duty
vehicles have more variations, which lead to the difficulties of
recognition in the real surveillance.

Moreover, from Fig. 5 and Fig. 6, we can see the vehicle
type classification results of the proposed method. Among
them, Fig. 5 is the results under the scene of urban street, while
Fig. 6 demonstrates the results for the scene in highway. Also,
our experimental results are robust to the different viewpoints
of surveillance cameras. All these video sequences come from
traffic surveillance in the reality.

Compared with other traditional methods which can not
adaptively deal with the various situations, the proposed
method can perform well in the low-resolution traffic surveil-
lance under different scenes.
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Fig. 5: Vehicle type classification results for street scene.
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Fig. 6: Vehicle type classification results for highway scene.

IV. CONCLUSION

In this paper, a novel method is proposed for vehicle type
classification. Experimental results show that the proposed
method outperforms other traditional methods, and has a very
wide application prospects. It is because this framework can
avoid the uncontrolled effects of environment, such as hash
image conditions, illumination conditions and various road
situations. Also, our method can be extended to an online
learning framework if the processing power of servers is great
enough. From the above, we truly believe that the proposed
method can be widely implemented in the real surveillance
systems and other classification problems.
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