
GraphSPD: Graph-Based Security Patch Detection with
Enriched Code Semantics

Shu Wang1*, Xinda Wang1*, Kun Sun1, Sushil Jajodia1, Haining Wang2, Qi Li3

1 Center for Secure Information Systems, George Mason University
2 Virginia Tech 3 Tsinghua University

44th IEEE Symposium on Security and Privacy, 2023

* Equal Contribution

Background

● A large volume of OSS security patches (e.g., GitHub commits fixing vulnerabilities)

are silently released.

● Average users need to timely detect and apply security patches before being

exploited by armored attackers.

Not report to NVD

Not provide explicit description

2

Previous Solutions and Limitations

An OSS Patch

Natural Language Documentation
(Commit Message/Changelog) Source Code Changes

• Mining security keywords
 Requiring well-maintained doc.

• Regarding code as sequential data

 Losing important semantics.

• Our solution: representing code as graph

 Retaining rich patch structural info.

3

Our Solution: A Graph-Based Security Patch Detection System

● PatchCPG: a new graph representation of inherent code change structures.

○ Syntax and semantics: AST + control & data dependency graph.

○ Changes and relations with context: pre-patch + post-patch graph.

● PatchGNN: a tailored GNN model to capture diverse patch structural information.

4

PatchCPG: From Patch to Graph

● Challenge: how to construct PatchCPG?

5

Patch Code Property Graph (PatchCPG)

• A joint graph encodes rich
patch structural information.

6

What is deleted?

What is added?

What context statements are related?

Patch Code Property Graph (PatchCPG)

• A joint graph encodes rich
patch structural information.

7

What is deleted?

What is added?

What context statements are related?

Which statements decide
the (un)safe operation?

Patch Code Property Graph (PatchCPG)

• A joint graph encodes rich
patch structural information.

8

What is deleted?

What is added?

What context statements are related?

Where the value comes from?

Which statements decide
the (un)safe operation?

Patch Code Property Graph (PatchCPG)

• A joint graph encodes rich
patch structural information.

9

What is deleted?

What is added?

What context statements are related?

Where the value comes from?

Which statements decide
the (un)safe operation?

How each statement
looks like?

Patch Code Property Graph (PatchCPG)

• A joint graph encodes rich
patch structural information.

10

Reducing Noisy Information by Slicing

Too many statements

Only retain most relevant contexts

slicing

11

PatchGNN: Detect Security Patches from PatchCPGs

● Challenge 1: how to embed the PatchCPGs?

● Challenge 2: how to learn multiple attributes (CDG/DDG/AST/pre/post)?

12

PatchCPG Embeddings

● Edge Embedding

○ 5-dimensional binary vector.

e.g., [1,1,0,1,0] means the edge is a
context edge of data dependency.

● Node Embedding

○ 20-dimensional vulnerability features.
■ code snippet metadata
■ identifier and literal features
■ control flow features
■ operator features
■ API features

13

PatchGNN with Multi-Attribute Graph Convolution

Mean

each dimension of edge embeddings
→ one convolution channel

14

CDG

DDG

AST

Pre-Patch

Post-Patch

Implementation & Evaluation

Implementation

• 5K new LoC in Scala and Python on top of Joern parser and PyTorch library.

Datasets:

• PatchDB: 12K security patches from 300+ GitHub repos.

• SPI-DB: 10K security patches from FFmpeg and QEMU.

Evaluation:

• Compared with sequential-based patch detector.

• Compared with vulnerability detection methods.

• Case study on four popular OSS repos.

15

Compared with Sequential-based Solution

● Accuracy 10.8%↑
● F-1 score: 0.096↑

● Precision: 28.82%↑
● False Positive Rate: 14.62%↓

[1] PatchRNN: A Deep Learning-Based System for Security Patch Identification.
[2] SPI: Automated Identification of Security Patches via Commits. 16

Compared with Vulnerability Detection Solutions

● 2.5 - 50x detection rate of vulnerability detectors.

[3] Cppcheck. https://cppcheck.sourceforge.io.
[4] flawfinder. https://dwheeler.com/flawfinder/.
[5] Redebug: finding unpatched code clones in entire os distributions.
[6] VUDDY: A scalable approach for vulnerable code clone discovery.
[7] VulDeePecker: A deep learning- based system for vulnerability detection. 17

Case Study on OSS Repos

● NGINX: detect 21 security patches (Precision: 78%).

● Xen: detect 29 security patches (Precision: 55%).

● OpenSSL: detect 45 security patches (Precision: 66%).

● ImageMagick: detect 6 security patches (Precision: 46.2%).

18

Conclusion

● Silent security patches can be leveraged by attackers to launch N-day

attacks.

● GraphSPD presents patches as graphs and identifies security patches with

graph learning, achieving higher accuracy and fewer false alarms.

● GraphSPD can be extended to other programming languages.

19

Thank you!

Contacts: {swang47, xwang44}@gmu.edu

Website: https://sunlab-gmu.github.io/GraphSPD/

20

https://sunlab-gmu.github.io/GraphSPD/

