

44th IEEE Symposium on Security and Privacy, 2023

GraphSPD: Graph-Based Security Patch Detection with Enriched Code Semantics

Shu Wang^{1*}, Xinda Wang^{1*}, Kun Sun¹, Sushil Jajodia¹, Haining Wang², Qi Li³

¹ Center for Secure Information Systems, George Mason University ² Virginia Tech ³ Tsinghua University

* Equal Contribution

Background

• A large volume of OSS security patches (e.g., GitHub commits fixing vulnerabilities) are silently released.

From 7f9822a48213dd2feca845dbbb6bcb8beb9550de Subject: [PATCH] Add blinding to a DSA signature

This is based on side channel attacks demonstrated by (NCC Group) for ECDSA which are likely to be able to be applied to DSA.

From 41bdc78544b8a93a9c6814b8bbbfef966272abbe
Subject: [PATCH] x86/tls: Validate TLS entries to protect espfix

Installing a 16-bit RW data segment into the GDT defeats espfix. AFAICT this will not affect glibc, Wine, or dosemu at all.

Not report to NVD

Not provide explicit description

• Average users need to **timely detect** and apply security patches before being exploited by armored attackers.

Previous Solutions and Limitations

Mining security keywords
 Requiring well-maintained doc.

Regarding code as sequential data
 Losing important semantics.

Our solution: representing code as graph
 Retaining rich patch structural info.

Our Solution: A Graph-Based Security Patch Detection System

- PatchCPG: a **new graph representation** of inherent code change structures.
 - Syntax and semantics: AST + control & data dependency graph.
 - Changes and relations with context: pre-patch + post-patch graph.
- PatchGNN: a tailored GNN model to capture diverse patch structural information.

PatchCPG: From Patch to Graph

• Challenge: how to construct PatchCPG?

Reducing Noisy Information by Slicing

PatchGNN: Detect Security Patches from PatchCPGs

- Challenge 1: how to embed the PatchCPGs?
- Challenge 2: how to learn multiple attributes (CDG/DDG/AST/pre/post)?

PatchCPG Embeddings

- Node Embedding
 - 20-dimensional vulnerability features.
 - code snippet metadata
 - identifier and literal features
 - control flow features
 - operator features
 - API features

- Edge Embedding
 - 5-dimensional binary vector.

e.g., [1,1,0,1,0] means the edge is a context edge of data dependency.

PatchGNN with Multi-Attribute Graph Convolution

Implementation & Evaluation

Implementation

• **5K new LoC** in Scala and Python on top of *Joern* parser and *PyTorch* library.

Datasets:

- PatchDB: 12K security patches from 300+ GitHub repos.
- SPI-DB: 10K security patches from FFmpeg and QEMU.

Evaluation:

- Compared with sequential-based patch detector.
- Compared with vulnerability detection methods.
- Case study on four popular OSS repos.

Compared with Sequential-based Solution

● Accuracy 10.8%↑

- Precision: 28.82%↑
- F-1 score: 0.096↑ False Positive Rate: 14.62%↓

Method	Dataset	General Metrics		Special Metrics	
		Accuracy	F1-score	Precision	FP Rate
TwinRNN	PatchDB	69.60%	0.461	48.45%	19.67%
[1][2]	SPI-DB	56.37%	0.512	49.07%	41.57%
GraphSPD	PatchDB SPI-DB	80.39% 63.04%	0.557 0.503	77.27% 63.96%	5.05% 19.16%

[1] PatchRNN: A Deep Learning-Based System for Security Patch Identification.

[2] SPI: Automated Identification of Security Patches via Commits.

Compared with Vulnerability Detection Solutions

• **2.5 - 50x** detection rate of vulnerability detectors.

Method	# Vul _{pre-patch}	# Vul _{post-patch}	# Patch _{security}	TP Rate
Cppcheck[3]	3	1	2	0.54%
flawfinder[4]	109	108	1	0.27%
ReDeBug[5]	29	29	0	0.00%
VUDDY[6]	22	16	21	5.71%
VulDeePecker[7]	3	0	3	0.82%
GraphSPD	-	-	53	14.40%

[3] Cppcheck. https://cppcheck.sourceforge.io.

- [4] flawfinder. https://dwheeler.com/flawfinder/.
- [5] Redebug: finding unpatched code clones in entire os distributions.
- [6] VUDDY: A scalable approach for vulnerable code clone discovery.
- [7] VulDeePecker: A deep learning- based system for vulnerability detection.

Case Study on OSS Repos

• **NGINX**: detect 21 security patches (Precision: 78%).

Changes w/	CVE	Total Commits	Valid Commits	Detected S.P.	Confirmed S.P.	Precision
1.19.x	3	180	127	7	6	86%
1.17.x	3	134	82	4	3	75%
1.15.x	1	203	120	7	4	57%
1.13.x	1	270	157	9	8	89%
Sum.	8	787	486	27	21	78%

- Xen: detect 29 security patches (Precision: 55%).
- **OpenSSL**: detect 45 security patches (Precision: 66%).
- ImageMagick: detect 6 security patches (Precision: 46.2%).

Conclusion

- Silent security patches can be leveraged by attackers to launch N-day attacks.
- GraphSPD presents patches as graphs and identifies security patches with graph learning, achieving higher accuracy and fewer false alarms.
- GraphSPD can be extended to other programming languages.

Thank you!

Contacts: {swang47, xwang44}@gmu.edu

Website: https://sunlab-gmu.github.io/GraphSPD/

