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Abstract—With the increasing popularity of open-source soft-
ware, embedded vulnerabilities have been widely propagating
to downstream software. Due to different maintenance policies,
software vendors may silently release security patches without
providing sufficient advisories (e.g., CVE). This leaves users
unaware of security patches and provides attackers good chances
to exploit unpatched vulnerabilities. Thus, detecting those silent
security patches becomes imperative for secure software main-
tenance. In this paper, we propose a graph neural network
based security patch detection system named GraphSPD, which
represents patches as graphs with richer semantics and utilizes
a patch-tailored graph model for detection. We first develop a
novel graph structure called PatchCPG to represent software
patches by merging two code property graphs (CPGs) for
the pre-patch and post-patch source code as well as retaining
the context, deleted, and added components for the patch.
By applying a slicing technique, we retain the most relevant
context and reduce the size of PatchCPG. Then, we develop
the first end-to-end deep learning model called PatchGNN to
determine if a patch is security-related directly from its graph-
structured PatchCPG. PatchGNN includes a new embedding
process to convert PatchCPG into a numeric format and a
new multi-attributed graph convolution mechanism to adapt
diverse relationships in PatchCPG. The experimental results
show GraphSPD can significantly outperform the state-of-the-
art approaches on security patch detection.

I. INTRODUCTION

While the open source software (OSS) movement has made
great contributions to computer software development, the
number of OSS vulnerabilities also increases dramatically. As
announced by the 2021 OSSRA report [1], 98% of codebases
contain open source components; meanwhile, 84% of code-
bases have at least one open-source vulnerability and 60%
of them contain high-risk vulnerabilities. By exploiting the
OSS vulnerabilities reported in the vulnerability databases
(e.g., NVD [2]), attackers can perform “N-day” attacks against
unpatched software systems. For instance, the remote com-
mand execution vulnerability (CVE-2021-22205) was initially
released on April 2021 [3]; however, after seven months, over
30,000 unpatched GitLab servers have been compromised and
misused to launch DDoS attacks.

Timely software patching is an effective common practice
to reduce the “N-day” attacks. Unfortunately, users or admins
are often overwhelmed with the increasing large number of
various patches on adding new features, resolving performance
bugs, or fixing security vulnerabilities. Thus, the software
updates could be postponed, due to the workflow of collecting,
testing, validating, and scheduling the patches [4]. To address

§The first two authors contributed equally to this work.

this software patching challenge, it becomes critical for users
and admins to distinguish the security patches from other
patches and prioritize the patches for fixing security vulner-
abilities. However, not all the security patches are reported
to NVD or explicitly recognized in the changelog. Software
vendors may silently release security patches since the patch
management is quite subjective [5]. For those silent security
patches, it is hard for users and system admins to understand
their real security impacts and hence fail to set a high priority
for applying corresponding patches. Therefore, it is vital to
distinguish security patches from other patches.

To identify security patches, researchers have either em-
ployed machine learning (ML) methods with syntax fea-
tures [5], [6], [7] or performed recurrent neural networks
(RNNs) to handle the patch code as a sequential data struc-
ture [8], [9]. However, all existing solutions have two major
limitations: lack of program semantics and high false-positive
rate. First, with the focus on code syntax only, they achieve
a relatively low accuracy on detecting security patches. For
example, the ML-based methods focus on extracting the meta-
data and keyword features, missing the dependencies between
statements. Inspired by natural language processing (NLP)
techniques, RNN-based methods segment the programs as a
set of code tokens and leverage sequential models to identify
security patches. However, they ignore the unique properties
of programming languages on component units, dependency
relationships, and token types. Second, the high false-positive
rates of existing solutions limit their usages. For instance, two
twin RNN based solutions [8], [9] that leverage both source
code and commit messages have the false-positive rates of
11.6% and 33.2%, respectively. Considering that only 6-10%
of overall patches are security-related [10], it is imperative to
reduce the false positives.

In this paper, we propose a graph-based security patch
detection system GraphSPD that consists of two core compo-
nents: a graph representation of patches called PatchCPG and a
patch-tailored graph neural network model called PatchGNN.
PatchCPG accommodates enriched semantics information of
patches by extending the code property graph (CPG) [11] to
integrate both pre-patch and post-patch versions of the source
code. After converting the graph topology of PatchCPG into a
numeric format with patch-tailored features, PatchGNN uses
a new multi-attributed graph convolution mechanism to adapt
diverse relationships in PatchCPG.

We first develop PatchCPG, a new intermediate graph repre-
sentation, to embed richer syntax and semantic information of
patches. Several graph representations have been developed for
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analyzing source code [12], [13], [14], [15], [16], [17], [18],
[19]; however, none of them are dedicated for representing the
code changes between two different versions. By extending the
code property graph [11], PatchCPG is a directed edge-labeled
and attributed multigraph, where the nodes store attributes
of statements and the edges are labeled with different types
of relations between the nodes. Particularly, it contains new
node attributes and edge labels to mark the added, deleted, or
context code for a given patch.

The basic principle of constructing a PatchCPG is to retain
the relevant identical context components and accommodate
the added and deleted nodes/edges in a unified graph. To this
end, we first retrieve both the pre-patch and post-patch files
of the source code and remove irrelevant functions. Then,
after generating two CPGs for both pre-patch and post-patch
functions, we merge these two CPGs into a joint structure.
Further, a program slicing technique is adopted to retain the
most relevant components to the changed code.

Using PatchCPG as input, our graph neural network based
model PatchGNN can detect if the patch is a security or
non-security patch. Since the graph representation cannot be
directly processed by deep learning models, PatchCPG is first
embedded into a numeric format, where the graph topology
is denoted by an adjacent matrix and the edge/node attributes
are represented by embedding vectors. We customize 20 patch-
related features for each statement as the node embedding. The
edge embedding is a vector representing the version informa-
tion and edge types. To process the diverse edge attributes
in PatchCPG, we propose a new multi-attributed convolution
mechanism that views each dimension of edge embeddings
as an individual convolution channel. The graph convolution
operates in each subgraph individually with different weights;
and then the multi-attributed convolution result is obtained by
aggregating the information from all subgraphs.

We implement a prototype of GraphSPD on detecting
C/C++ security patches with 5K LoC in Scala and Python.
Then, we conduct extensive experiments over two public
C/C++ patch datasets: PatchDB [10] and SPI-DB [9]. The
experimental results indicate that GraphSPD can achieve up to
80.4% detection accuracy, with a relatively low false-positive
rate of 5%. Our further analysis reveals that the most valuable
context in PatchCPG is carried by the statements directly
connected with the changed ones.

We conduct performance comparison with two categories
of detection mechanisms. First, we directly compare our work
with other security patch detection methods. Compared with
the RNN based methods [8], [9], our system can achieve much
higher accuracy along with a significant reduction of the false-
positive rate (the false-negative rate remains the same). Sec-
ond, vulnerability detection tools can be leveraged to identify
security patches since they should detect vulnerabilities in the
pre-patch version and detect no such vulnerabilities in the post-
patch version. Compared with five state-of-the-art vulnerability
detection approaches [20], [21], [22], [23], [24], GraphSPD
can boost the detection rate by at least 2.5 times.

We also evaluate the real-world performance of GraphSPD

by conducting a case study to detect the silent security patches
on four popular open source repositories, i.e., NGINX, Xen,
OpenSSL, and ImageMagick. Among 137 identified patches
by GraphSPD, 88 are security patches that are not assigned
with CVE IDs and/or explicitly described in the changelog or
the commit messages.

In summary, we make the following contributions:
• We present a security patch detection system GraphSPD that

consists of two key components: PatchCPG and PatchGNN,
achieving high accuracy and fewer false alarms.

• We develop a novel graph data structure PatchCPG for
patches by leveraging the rich semantics of both pre-patch
and post-patch source code. To the best of our knowledge,
PatchCPG is the first graph-based patch representation that
can significantly improve detection accuracy.

• We propose a graph learning model PatchGNN to detect
security patches. PatchGNN utilizes multi-attributed convo-
lution to adapt the diverse relationships in PatchCPGs and
adopts patch-tailored features to reduce false alarms.

• We implement a prototype of GraphSPD and conduct ex-
periments to evaluate its effectiveness and efficiency.1 We
also perform case studies on four open source repositories to
validate the practicality of GraphSPD on real-world projects.

II. PRELIMINARIES

A. Security and Non-Security Patches

Open source software patches record the changes between
two different versions of source code. The best practices for
Git commit include making single-purpose commit [25], [26],
and we observe it is usually followed by well-maintained Git
repositories. In our work, we define a “patch” as a single-
purpose Git commit for addressing a security vulnerability (a
security fix), resolving a functionality bug (a non-security re-
pair), or updating a new feature. Among them, security patches
are usually considered more urgent and given higher priority
than non-security ones. We consider a patch as a “security
patch” if it fixes a vulnerability belonging to any Common
Weakness Enumeration Specification (CWE) type [27], no
matter what trigger condition it may apply to.

Listings 1 and 2 exemplify a security patch and a non-
security patch, respectively. The code revision is represented
as a set of consecutive deleted and/or added statements (i.e.,
the lines starting with a single - or +). In Listing 1, an if
statement (Line 8) is added before the original assignment
statement to check if the pointer tcon is valid. This security
patch mitigates a NULL pointer dereference vulnerability,
where an invalid pointer with a value of NULL can lead to
a crash or exit. Listing 2 shows an example of non-security
patch, where an obsolete identifier hack is deleted since it
is no longer used in the subsequent code, but this variable
definition (Line 7) will not incur any security problems.

1Our study is performed on OSS patches that can be publicly accessed on
NVD and GitHub. To help admins and developers identify silent security
patches and prioritize their deployment, we release our source code at
https://sunlab-gmu.github.io/GraphSPD.
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1 commit 18f39e7be0121317550d03e267e3ebd4dbfbb3ce
2 diff --git a/fs/cifs/smb2pdu.c b/fs/cifs/smb2pdu.c
3 @@ -907,7 +907,8 @@ tcon_exit:
4 tcon_error_exit:
5 if (rsp->hdr.Status == STATUS_BAD_NETWORK_NAME) {
6 cifs_dbg(VFS, "BAD_NETWORK_NAME: %s\n", tree);
7 - tcon->bad_network_name = true;
8 + if (tcon)
9 + tcon->bad_network_name = true;

10 }
11 goto tcon_exit;
12 }

Listing 1: An example of security patch (CVE-2018-19200).

1 commit 6cf575b1ad989fbb8a239dd6acc26d72286eb4cb
2 diff --git a/src/path.c b/src/path.c
3 @@ -1145,7 +1145,6 @@ int git_path_diriter_init(
4 unsigned int flags)
5 {
6 git_win32_path path_filter;
7 - git_buf hack = {0};
8
9 static int is_win7_or_later = -1;

10 if (is_win7_or_later < 0)

Listing 2: An example of non-security patch.

By default, patches contain 6 neighboring code lines (e.g.,
Line 4-6 and 8-10 in Listing 2) as the context for each code
revision. However, these context statements may not provide
sufficient semantics to understand the patches. Fortunately, to
perform code analysis on an OSS patch, we can retrieve the
source code before and after applying this patch, and we call
them pre-patch and post-patch files/functions, respectively.
A patch is considered as a security patch when a vulner-
ability exists in the pre-patch code and the corresponding
fix statements are in the post-patch code. Usually, security
patches can involve sanity checks, which are security checks
on critical values like bound, permission, etc. For example, for
the patches to fix use-after-free and double-free vulnerabilities,
sanity checks are the added conditional statements to check the
availability of pointers or memory.
B. Code Property Graph

Code property graph (CPG) [11] is a language-agnostic
intermediate program representation, which merges multiple
abstract representations of source code into one queryable
graph database. The CPG merges three compiler representa-
tions (i.e., Abstract Syntax Tree (AST), Control Flow Graph
(CFG), and Program Dependence Graph (PDG)) into a single
joint data structure. AST is a code representation generated
by the syntax analysis of a compiler. CFG is a graph structure
that represents all the possible traversed paths during pro-
gram execution. PDG comprises of control dependency graph
(CDG) and data dependency graph (DDG) to represent the
control and data dependencies, respectively [28]. By contain-
ing all the information of control flow, control dependency,
intra-procedural data dependency, and program syntax, CPG
provides a comprehensive view for code static analysis.

Multiple CPG-assisted approaches [14], [15], [18], [29]
are developed for vulnerability detection. The open-source
platform Joern can generate CPGs and represent the output
CPGs with nodes, labeled directed edges, and key-value pairs
(i.e., node attributes) [30]. We extend the CPGs for patches
with more semantics between pre-patch and post-patch code.

Target
Patch PatchCPG Embedding

Matrices
PatchGNN

Detection Model

PATCH

Prediction

Fig. 1: Workflow of GraphSPD system.

III. SYSTEM OVERVIEW

A. System Model and Workflow
The overall workflow of GraphSPD is illustrated in Figure 1.

The inputs of GraphSPD are OSS patches, which are first
mapped to an intermediate graph representation PatchCPG
that contains control/data dependency and program syntax.
Next, the nodes and edges of PatchCPG are converted into
embedding matrices, which are fed into a graph-based deep
neural network PatchGNN that predicts if the input patches
are either security or non-security patches.
Mapping Patches to PatchCPGs. Before using the deep
learning techniques to identify security patches, we need to
first convert the input patches into a proper type of intermedi-
ate representation that can be processed by neural networks.
Compared with the code sequential representations (e.g., pro-
cessed by the NLP techniques), the graph representations can
embed richer information such as control/data dependency.
Therefore, we develop a novel graph-based data structure
called PatchCPG to represent the patches in C/C++.

Due to the limited context information in the patch files
themselves, we first retrieve the pre-patch and post-patch
source code to obtain more context details. For a security
patch, the pre-patch source code can reveal the vulnerability
patterns, while the post-patch source code can indicate the
fixing details. Therefore, we build two CPGs of the pre-patch
and post-patch source code, respectively. PatchCPG is a data
structure constructed by merging the CPGs of pre-patch and
post-patch source code. The merging principle is to retain the
shared context components in both CPGs and then attach the
deleted and added components from the pre-patch CPG and
post-patch CPG, respectively. Therefore, PatchCPG is a unified
graph containing nodes and edges from two different versions.

However, introducing more context from the source code
will also bring a large amount of noise (i.e., irrelevant context
information) into the detection process, thus impairing the
system performance. We mitigate this problem by removing
irrelevant context from two aspects. First, before the CPG
extraction from source code, all functions that are not involved
in the patch are removed from the source code files. Second,
after merging CPGs, a program slicing technique is applied
over PatchCPG to limit the range of context code according to
the hop count towards the nodes of deleted/added statements.
Detecting Security Patches via PatchGNN. To identify
security patches, PatchCPG instances will be first transformed
into a numeric format and then fed into the PatchGNN. To
embed a PatchCPG into a numeric graph G, we convert the
topology into an adjacency matrix and embed the attributes
of edges and nodes. The edges in PatchCPG are embedded
into 5-dimensional vectors using the corresponding version
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Fig. 2: Overview of PatchCPG construction.

information and edge types. The nodes in PatchCPG are
embedded into 20-dimensional vulnerability-relevant features,
which are extracted from the node attributes and involved
statements. These features are customized for patches, so
they are crucial for reducing false alarms in security patch
detection. Node embeddings contain 2 code-independent fea-
tures (i.e., code snippet metadata) and 18 code-dependent
features (i.e., features of identifiers, literals, control flows,
operators, and APIs). To extract the code-dependent features,
the statement in each node is segmented as a set of code tokens
with different token types. The feature extraction is based on
token (or sub-token) matching and token type recognition.

The architecture of PatchGNN is based on graph convolu-
tion networks, which learn the model via message propaga-
tion along the neighboring nodes. Since PatchCPG contains
multiple attributes (e.g., version information, edge types), we
propose a multi-attributed convolution mechanism to achieve
convolution operations in different subgraphs and aggregate
the information from all subgraphs. Here, the PatchGNN
is a classification model that can be described formally as
fp : G(V,E) 7→ [0, 1]2. The detector output is a vector (p0, p1)
representing two class probabilities (p0 + p1 = 1). The training
objective is to find the optimized parameters of fp to minimize
the cross-entropy, i.e., minfp

∑
−(y log(p1)+(1−y) log(p0)),

where y denotes a binary indicator (0 or 1) showing if the input
is a real non-security or security patch. A patch is determined
as the category with a higher possibility in detection phase.

B. Assumption
We assume that the source code of both pre-patch and

post-patch versions can be accessed via version control sys-
tems (e.g., Git). Except the patches and the involved source
code, we do not require any descriptive documentations (e.g.,
commit messages and changelogs) since the quality of such
documentations highly relies on their maintainers and some
commit messages are not accurate or even empty. Our Graph-
SPD system focuses on the patches in the C/C++ language,
which contain more high-severity vulnerabilities than other
programming languages. In the past 10 years, 52.13% of the
reported vulnerabilities in open source software are written in
C/C++ [31]. Our high-level design guidance for graph-based
security patch detection can be adapted to other languages.

IV. CONSTRUCTING PATCH CODE PROPERTY GRAPHS

As illustrated in Figure 2, a PatchCPG can be constructed
in three steps, namely, generating CPGs, merging CPGs into
a PatchCPG, and reducing the size of PatchCPG.

A. Generating Pre-Patch and Post-Patch CPGs

Since a patch contains pre-patch and post-patch code, we
can generate pre-patch and post-patch CPGs, respectively.

Retrieving Pre-Patch and Post-Patch Source Code. Though
a patch contains multiple lines of context code (e.g., three lines
ahead and behind the changed code snippet by default), we
may miss some critical context out of this range. To solve this
problem, we retrieve the files of full source code before and
after applying the patch. Each patch on the Git repositories
can be uniquely identified by a commit ID (i.e., a 20-byte
SHA-1 hash). Given the commit ID of a specific patch, the
source code of the corresponding Git repository can be rolled
back exactly to the point before and after applying this patch
by using the git reset command. Thus, we can obtain the
source code files of both pre-patch and post-patch versions.

Identifying Patch Related Functions. There may be multiple
code files in each software version; however, we only focus on
the files modified by the patch. These files can be identified
by the header lines starting with --- and +++ (e.g., Line
3-4 in Listing 3). In these files, we focus on the functions
containing code revisions. To include global variables in our
analysis, we remove unrevised functions from the related files
instead of retaining all revised functions. We first identify all
functions and their scopes (i.e., the line number range between
function start and function end) via Joern parser [32]. A patch
contains the range information showing the line numbers of
changed code in pre-patch and post-patch files, e.g., in Line 5
of Listing 3, Line 3439 is deleted from the unpatched file and
Line 3444-3447 are added to the patched file. We compare
their scopes with those revised by the patch. After removing
irrelevant functions, we obtain the patch-related functions.

Constructing Pre-Patch and Post-Patch CPGs. Given the
patch-related functions in pre-patch and post-patch versions,
we apply the Joern parser [32] to generate two CPGs (i.e.,
Gpre and Gpost). Given a CPG, we describe the graph with
two sets: (V,E). V is a set of nodes represented with 2-tuple
(id, code), where id is a number to identify the node and
code is the source code component depicted by this node, i.e.,
a code token in AST or a statement in CDG/DDG. E is a
set of directed edges represented with 3-tuple (id1, id2, type),
where id1 and id2 represent the IDs of start and end nodes.
type ∈ {AST,CDG,DDG} is the edge type indicating if the
edge belongs to the AST or denotes control/data dependency.
Note that Joern also provides CFG, but we do not include it
since the information of CFG has been included by CDG.
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1 diff --git a/core/tee/tee_svc_cryp.c b/core/tee/
tee_svc_cryp.c

2 index a5beb339cc9..f60f3d248c2 100644
3 --- a/core/tee/tee_svc_cryp.c
4 +++ b/core/tee/tee_svc_cryp.c
5 @@ -3439 +3444,4 @@ TEE_Result syscall_asymm_verify(

unsigned
6 TEE_Result syscall_asymm_verify(unsigned long state,

const struct utee_attribute *usr_params, size_t
num_params, const void *data, size_t data_len,
const void *sig, size_t sig_len)

7 {
8 TEE_Result res;
9 TEE_Attribute *params = NULL;

10 struct user_ta_ctx *utc;
11
12 ...
13
14 res = tee_mmu_check_access_rights(utc,

TEE_MEMORY_ACCESS_READ |
TEE_MEMORY_ACCESS_ANY_OWNER, (uaddr_t)sig, sig_len)
;

15 if (res != TEE_SUCCESS)
16 return res;
17
18 - params = malloc(sizeof(TEE_Attribute) * num_params);
19 + size_t alloc_size = 0;
20 + if (MUL_OVERFLOW(sizeof(TEE_Attribute), num_params,

&alloc_size))
21 + return TEE_ERROR_OVERFLOW;
22 + params = malloc(alloc_size);
23
24 if (!params)
25 return TEE_ERROR_OUT_OF_MEMORY;
26 res = copy_in_attrs(utc, usr_params, num_params,

params);
27 if (res != TEE_SUCCESS)
28 goto out;
29
30 ...
31
32 out:
33 free(params);
34 return res;
35 }

Listing 3: A security patch for buffer overflow vulnerability
(CVE-2019-1010298).

B. Merging into PatchCPG

For each pair of pre-patch and post-patch functions, we
merge the corresponding two CPGs into a unified graph
structure called PatchCPG. The function names are used to
pair the functions in the pre-patch files with the corresponding
ones in the post-patch files. According to the code revision of
patches, we define three types of components in a PatchCPG.
• Deleted components. They are nodes and edges in the pre-

patch graph and do not appear in the post-patch one. For a
security patch, the deleted components are highly relevant
to the vulnerabilities.

• Added components. They are nodes and edges that only
exist in the post-patch graph and are not in the pre-patch
one. For a security patch, the added components are usually
the operations to fix the vulnerabilities.

• Context components. They are the nodes and edges cor-
responding to unchanged statements, which appear in both
pre-patch and post-patch functions. Though these compo-
nents are not modified by patches, they contain context in-
formation that are related to the deleted or added statements.
The main idea of merging into PatchCPG is to retain

the context components and attach the deleted and added

AST edge

DDG edge

CDG edge

Context

Addition

Deletion

Fig. 3: Patch Code Property Graph (PatchCPG) of the patch in
Listing 3 (the edge version and most AST parts are omitted).

components in a unified graph. Given the pre-patch and post-
patch CPGs, the algorithm will merge them into a PatchCPG
in three steps. (1) Identifying the node versions. For each node,
we identify if it is a deleted, added, or context component. (2)
Identifying the edge versions. For each edge, we will identify
if one of its connected nodes is deleted or added components.
If so, the edge is marked as the corresponding component.
An edge is a context component only if both of its connected
nodes are context. (3) Re-assigning node IDs and merging the
node and edge sets. We re-assign each node a new node ID
since the node IDs in pre-patch and post-patch CPGs may
be conflicting. After updating node IDs in the edge sets, we
merge the node/edge sets of pre-patch and post-patch CPGs
into a unified node/edge set. In this way, we obtain a PatchCPG
depicted by two sets (V ′, E′), where V ′ = Vpre ∪ Vpost and
E′ = Epre ∪ Epost. Then, we append an additional element
version to each tuple of nodes/edges. Thus, the node set V ′

is represented with 3-tuples (id, code, version) and the edge
set E′ is represented with 4-tuples (id1, id2, type, version),
where version ∈ {deleted, added, context} is the version
information denoting which type of component in PatchCPG
the node/edge belongs to.

C. Computing Slices over Code Changes
In PatchCPG, it is unnecessary to include all the statements

in a function since some of them are irrelevant to vulnerabil-
ities. To locate the vulnerability-relevant context statements,
we perform program slicing [33] on the source code with
the criterion of deleted/added statements. Different from the
traditional definition in a patch where adjacent statements
of changed code are regarded as context [34], we define
our sliced statements as context since only these statements
have dependencies with the changed ones. Our slicing can be
performed in two directions: backward and forward slicing.
• Backward slicing is to locate the source of the vulnerability.

For example, when we set a deleted statement (e.g., Line 18
in Listing 3) as the criterion, the results of back slicing are
the statements in Line 6 and 15. Line 18 is data dependent
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on Line 6 since the variable params is determined by
the argument num_params in the current function. Line
18 is control dependent on Line 15 since Line 18 can
be executed only when the condition in Line 15 is not
satisfied. Otherwise, the function will directly return. After
backward slicing, the nodes of Line 6 and 15, the data
dependency edge between Line 6 and 18, as well as the
control dependency edge between Line 15 and 18 will be
retained as backward context.

• Forward slicing is to find statements affected by the vul-
nerability. For example, in Listing 3, when we set the added
statement in Line 22 as a criterion, the results of forward
slicing are the statements in Line 24, 26, and 27 that are
directly/indirectly data dependent on the variable params.
However, the forward slicing results of Line 20 include all
the subsequent statements, i.e., Line 21-34. That is because
the program will directly return in Line 21 if the condition in
Line 20 is true. In this case, considering all the subsequent
statements as context will lead to too much noise since they
are not highly relevant to the criterion statements. Thus,
when the criterion happens to be a conditional statement
that leads to a function exit point (e.g., return), we no
longer consider the subsequent slicing results with control
dependency. Therefore, the nodes of Line 24, 26, and 27
as well as the data dependency edges between Line 22 and
them are retained as forward context.
After performing backward and forward slicing using con-

trol and data dependency, we retain all the nodes of changed
and sliced statements, as well as the traced edges. Note that
the slicing is only conducted in the CDG and DDG where
each node represents a statement. In PatchCPG, each AST is
constructed based on a statement node (i.e., a node in CDG
or DDG). Therefore, after determining the nodes in CDG and
DDG, it is trivial to include all the AST components that are
dependent on the retained context nodes. We can iteratively
conduct slicing to find all the context statements that directly
and indirectly depend on the criterion statements. In Listing 3,
Line 24 and 26 is directly dependent on the variable params
in Line 22. Since params decides the value of res in Line
26 while Line 27 checks if res is equal to a specific value,
Line 27 is indirectly data dependent on Line 22. Moreover,
more statements in the omitted part is indirectly dependent on
Line 22 and they are less relevant to the changed statement. To
reduce the noisy portion, we can empirically set the number
of iteration times, denoted as N . For instance, when we set
N = 1, the sliced statements of the changed code in Listing
3 will include Line 6, 15, 24, and 26. When N = 2, we will
further add Line 27 into the PatchCPG. We will discuss more
about the settings of N in our experiments (Section VI-D).

Figure 3 presents the constructed PatchCPG for Listing 3,
where the solid/dotted edges denote control/data dependencies
and red/green/white rectangles represent deleted/added/context
statements. Here, we set N = 1 so that all the retained context
statements are directly dependent on the changed code. In
Figure 3, we omit most AST subgraphs of each statement
and only show an example for statement of Line 15.

V. GRAPH LEARNING FOR SECURITY PATCH DETECTION

A. Embedding Methods
To feed PatchCPGs into a GNN-based model, the attributes

in the graphs should be embedded into numeric vectors. The
graph attributes contain two parts: edge attributes and node
attributes. Edge attributes represent the relationships between
the nodes in the graphs. Node attributes represent the code
snippet in each node, either a statement or a code token.
Edge Embedding. Edge embedding is used to reflect the
relationships between two nodes. The edges in PatchCPGs
involve two types of relationships, i.e., version information
and edge types. The version information refers to whether the
edge is present only in the pre-/post-patch version or in both
versions. The edge type refers to whether the edge belongs
to the CDG, DDG, or AST. It is possible that there are two
edges (one from CDG and the other from DDG) between the
two nodes. Therefore, the edge embedding is designed as a
5-dimensional binary vector. The first two bits are used to
indicate if the edge is present in the pre-patch version and the
post-patch version, respectively. If the edge belongs to both
versions, the first two bits will be (1, 1). The last three bits
indicate if there are any CDG, DDG, or AST edge between
current two nodes, respectively.
Node Embedding. Node embedding is a numeric represen-
tation of the code in each PatchCPG node, which can be
a statement in CDG/DDG or a code token in AST. In this
paper, the content in a node is called a code snippet no matter
it is a statement or a token. The node embedding is a 20-
dimensional vector describing the attributes of involved code
snippet. Comments are not included in code snippets due to the
various coding styles and vague reference scope. The C/C++
code snippets are first segmented into code tokens via clang
tool. Then, these tokens are identified into 4 types: keywords
(e.g., if), identifiers (variable and function names), literals
(strings and numbers), and punctuation (e.g., ++). Finally, we
extract the features highly related to security patch detection.

PatchGNN is able to learn the vulnerability patterns from
both the syntax-level and semantic-level representations. The
semantic representation is exhibited by the PatchCPG structure
with diverse edge relationships, while the syntax-level repre-
sentation is achieved by the node embeddings of code snippets.
Recent studies [35], [7] show source code vulnerabilities have
a high correlation with some specific syntax characteristics.
For instance, the pointer and array usages have a higher
possibility to be vulnerable in C/C++ language since these
operations usually lead to the out-of-bounds (OOB) access or
NULL pointer dereference. Moreover, several specific arith-
metic expressions can indicate potential improper operations
(e.g., integer overflow). Based on the observed syntax charac-
teristics of vulnerabilities, the following 20 features belonging
to 5 groups are extracted from the code snippet of each node.
• Code Snippet Metadata (2): the number of characters, the

version information (i.e., deleted, added, or context).
• Identifier and Literal Features (7): the number of function

calls, variables, numeric numbers, strings, pointers, arrays,
and null identifiers.
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TABLE I: The involved tokens or sub-tokens of the control
flow features, the operator features, and the API features.

Features Matched Tokens or Sub-tokens

condition if, switch
loop for, while
jump return, break, continue, goto, throw, assert

arithmetic† ++, --, +, -, *, /, %, =, +=, -=, *=, /=, %=
relational ==, !=, >=, <=, >, <
logical &&, ||, !, and, or, not
bitwise⋆ &, |, <<, >>, ∼, ∧, bitand, bitor, oxr

memory API
alloc, free, mem, copy, new, open, close, delete, create,
release, sizeof, remove, clear, dequene, enquene, detach,
attach

string API str, string
lock API lock, mutex, spin

system API
init, register, disable, enable, put, get, up, down, inc,
dec, add, sub, set, map, stop, start, prepare, suspend,
resume, connect,

† Operator * is determined as dereference operator or arithmetic operator.
⋆ Operator & is determined as address-of operator or bitwise operator.

• Control Flow Features (3): the boolean features indicating
if the node is a conditional, loop, or jump statement.

• Operator Features (4): the number of arithmetic, relational,
logical, and bitwise operators.

• API Features (4): the boolean features indicating if the
code snippet contains the APIs of memory operations, string
operations, lock operations, and system operations.
The node embedding is a numeric vector composed of the

above 20 code features. The metadata features are directly
derived, while the identifier and literal features are based on
the clang tokenization and the identified token types. The
control flow features and operator features are determined by
the exact matching of token keywords, as listed in Table I.
Since the API names are defined by developers, we provide a
set of sub-tokens based on our observation (as shown in the
last four rows in Table I). If a function name contains one
of these sub-tokens, the corresponding API feature is enabled.
Also, the sub-token matching scheme is case insensitive.

B. PatchGNN Model
General Design. PatchGNN is based on graph learning, which
provides a great capability of graph classification by neural
networks. Due to the diverse edge attributes, PatchCPG is a
heterogeneous graph. To better leverage the hidden knowledge
within PatchCPG, we construct the PatchGNN model with
a multi-attributed graph convolution mechanism. Figure 4
shows the architecture of PatchGNN model. After embedded
into a numeric format, the PatchCPG instances are first fed
into three multi-attributed graph convolutional layers. The
graph convolutional layers will update the node embeddings
of PatchCPG with the neighborhood information in different
subgraphs. We only use 3 convolutional layers in PatchGNN
because more convolution will lead to graph over-smoothing.
After the 3-layer graph convolution, graph embeddings can be
obtained by the graph pooling and vector concatenation. Graph
embedding is a type of graph representation where all the
nodes, edges, and their features are transformed into a unified
vector. Finally, a binary predictor constructed by multiple layer
perceptron (MLP) is utilized to convert the graph embeddings
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Fig. 4: The architecture of PatchGNN model.

into predicted labels. PatchGNN is the first end-to-end deep
learning model that determines if a patch is security-related
directly from its graph-structured information.
Multi-attributed Graph Convolution. For each node in
PatchCPG, the convolutional layers in PatchGNN tend to
gather information from its neighbors via different types of
edges. Due to the different roles of edge types, we cannot
use a set of unified weights to learn the detection model.
Each dimension of the edge embeddings can indicate different
relationships in PatchCPG, i.e., pre-patch/post-patch connec-
tions, control/data dependencies, and AST graph. As shown
in Figure 5, each edge can have multiple attributes while each
type of attributes can be used to construct a subgraph. As
the information in each dimension corresponds to a subgraph,
we can view each dimension as an individual convolution
channel. In the convolutional layers of PatchGNN, we process
the structural information of each channel individually and
aggregate the processed information of all subgraphs.

The matrix of edge embeddings is denoted as E, where E(k)
d

is the k-th attribute of the d-th edge. E(k) is a vector contains
the k-th attribute of all edges. Because E

(k)
d can be either 0

or 1, we generate a masked adjacency matrix M (k) according
to E(k), where M

(k)
ij = 1 if the edge connecting node i and

node j has the k-th attribute of 1, else M
(k)
ij = 0. M (k) can

be used to reflect the node connections of the k-th subgraph.
The multi-attributed graph convolution can be formulated as

X(h+1) =
1

K

K∑
k=1

σ((A⊙M (k) + IN ) ·X(h) ·W (k)
h ), (1)

where A is the adjacency matrix of PatchCPG, IN is the
identity matrix of size N , and ⊙ is the Hadamard product.
X(h) is the node embeddings in the h-th convolution layer.
W

(k)
h is the convolution weights of the k-th subgraph in the

h-th layer, which is obtained by graph model learning. K is
the total number of subgraphs and σ is the activation function.

As illustrated in Figure 6, the structural information from
different subgraphs will be aggregated to the convolution
result X(h+1) by the multi-attributed graph convolution. The
masked adjacency matrix M (k) can be thought of as a filter
that provides individual attention for each subgraph to learn
convolution parameters.
Security Patch Predictor. Since the output of convolutional
layers are graphs, we need further processing to obtain the final
predictions. First, the graph pooling layers are leveraged to
reduce the data dimension and acquire the graph embeddings.
In our design, we use both mean pooling and max pooling
to obtain two graph representations, each of which is a high-
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 1  ... ... 

 2    if (strlen(str[i]) < LEN)

 3    {

 4 -    memcpy(s, str[i], LEN);

 5 +    strncpy(s, str[i], LEN);

 6      s += LEN;   

 7    }

 8  ... ...


(a) Patch Code.

DDG

CDGCDG

ASTAST

AST

2: if (strlen(

str[i]) < LEN)


6: s += LEN;

4: memcpy(s,

str[i], LEN)


5: strncpy(s,

str[i], LEN)


+=

s LEN

DDG

DDGDDG

(b) Control Dependency Subgraph.

DDG

CDGCDG

ASTAST

AST

2: if (strlen(

str[i]) < LEN)


6: s += LEN;

4: memcpy(s,

str[i], LEN)


5: strncpy(s,

str[i], LEN)


+=

s LEN

DDG

DDGDDG

(c) Data Dependency Subgraph.
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(d) Abstract Syntax Tree Subgraph.
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(e) Pre-patch Subgraph.
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(f) Post-patch Subgraph.

Fig. 5: The subgraphs of PatchCPG where each edge can have
multiple attributes and each attribute can be converted as an
individual convolution channel in PatchGNN (the solid/dotted
edges represent node connection/disconnection in subgraphs).

dimensional vector. Then, these two graph representations are
concatenated to construct a final graph embedding, which
contains all information of the nodes, edges, and their features
in a PatchCPG. Afterwards, a dropout layer is performed as
a regularization method to prevent over-fitting in the model
training. To determine if a patch is security-related, a 3-layer
perceptron is built to transform the graph embedding into a
2-unit softmax output (p0, p1), where p0 + p1 = 1. Each unit
in the output indicates the probability that a patch instance
falls into the category of non-security/security patch.

VI. EXPERIMENTAL EVALUATION

A. Implementation
To retrieve the related files in pre-patch and post-patch

versions, we implement a parser to analyze the patch, which
is not a complete program unit. Since the Joern [32] can only
produce separate CPGs for pre-patch or post-patch code, we
extend it using Scala scripts to perform the graph merging and
PatchCPG generation. For program slicing, we develop Python
scripts to analyze control/data dependency and AST informa-
tion and output a sliced PatchCPG ready to be embedded.

We achieve the embedding methods by Python. Specifically,
we utilize the clang 6.0.0 tool for C/C++ code tokenization
and token type identification so that we can embed the
nodes in PatchCPG for graph learning. The implementation
of PatchGNN is built on the deep learning library PyTorch
1.6 that is optimized for tensor computing. We develop and
optimize our graph model based on the pytorch-geometric 1.6
library, which supports deep learning on graphs and other
structured data [36]. In total, we construct our GraphSPD
system with 5K LoC in Scala and Python.

Graph

Graph Convolution

Graph

Fig. 6: The multi-attributed graph convolution mechanism in
PatchGNN designed for the diverse relationships of PatchCPG.

B. Experimental Setup

Runtime Environments. All the experiments are conducted
on a Ubuntu 20.04 server with a Intel Xeon 5122 CPU running
at 3.60GHz, 512 GB RAM, and 2 NVIDIA GeForce RTX 2080
Ti GPU cards. The deep learning architecture is built on the
NVIDIA CUDA Toolkit 11.2 and cuDNN v8.1.
Datasets. We select two benchmark datasets: PatchDB [10]
and SPI-DB [9]. PatchDB is a security patch dataset that
contains 12K security patches and 24K non-security patches
in the C/C++ language. It comprises a NVD-based dataset
crawled from the NVD reference hyperlinks and a wild-
based dataset collected from GitHub commits. The samples
in PatchDB are derived from 311 open source repositories
(e.g., Linux kernel, MySQL, OpenSSL, Vim, Wireshark, httpd,
QEMU, etc.), providing the chance to test the cross-project
performance of security patch detection. SPI-DB is a security
patch dataset originally collected from Linux, FFmpeg, Wire-
shark, and QEMU, including 38,291 patches. Only a portion of
the dataset on FFmpeg and QEMU was released, containing
25,790 patches (10K security patches and 15K non-security
patches). Overall, the above two datasets provide us with
sufficient patch variants for evaluating cross-project and intra-
project performance. Also, the sample ratio can balance the
real-world utility and the model fitting.
Model. The PatchGNN model contains three multi-attributed
convolutional layers, each reducing the dimension of node
embeddings to 1/2 of the original one. In addition, the first
layer aggregates subgraph information with concatenation,
while the last two layers use the mean aggregation the same as
Equation (1). The number of subgraphs (K) is 5, including pre-
patch/post-patch graph, control/data dependency graph, and
AST graph. Therefore, the dimension of node embeddings
after the 1st, 2nd, and 3th convolution is 50, 25, and 12,
respectively. For the predictor, the dropout rate is set to 0.5
during the model training. The dimension of hidden layers in
the final multi-layer perceptron is (24, 8, 2). For the model
learning, 80% of randomly selected samples are used to train
the model parameters and the remaining 20% samples are used
for testing. This ratio holds for both security patches and non-
security patches. Also, we do not separate the training/test set
by the repository. The batch size is set to 128 and the learning
rate is 0.01. More details can be found in Appendix A.
State-of-the-Art Approaches. We conduct a comparison with
two categories of the state-of-art approaches. First, we directly
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compare our work with other security patch detection methods.
We choose the RNN-based solutions [8], [9] that utilize a
twin RNN scheme to determine if the patch is security-
related. Specifically, two RNN modules with shared weights
are deployed to process the pre-patch and post-patch code
sequences, respectively. We reproduce an RNN-based model
named TwinRNN according to these two works. Since com-
mit messages highly rely on maintenance policies and some
commit messages are not accurate or even empty, the Twin-
RNN model is implemented only leveraging the source code
revision, which meets practical needs in the real world and
provides a fair comparison with GraphSPD. We verify the
TwinRNN performance is consistent with that in the original
papers if we use both commit message and code revision.

Since few works utilize source code to identify security
patches directly, we consider leveraging existing vulnerability
detection tools to assist security patch detection. Given the
pre-patch and post-patch functions, we assume these tools
can identify security patches only if they can detect the
vulnerabilities in the pre-patch function but cannot detect
those vulnerabilities in the post-patch version. We select
three common baseline approaches including Cppcheck [20],
flawfinder [21], and ReDeBug [22] as well as two other
most effective works in this field, i.e., VUDDY [23] and
VulDeePecker [24]. The source codes of Devign [19] and
MVP [37] were not ready to be released yet. Among them,
Cppcheck and flawfinder are rule-based vulnerability detection
tools, ReDeBug and VUDDY are clone-based methods, and
VulDeePecker is a learning-based approach.
Evaluation Metrics. GraphSPD can be regarded as a clas-
sification model, so we use both general metrics and special
metrics to evaluate its effectiveness and practicality. General
metrics, including accuracy and F1-score, are used to evaluate
the overall performance of the classification model. Special
metrics are used to evaluate the practicability of the detection
system, including precision and false-positive rate (FPR).

C. Performance Evaluation
1) Overall Results: As illustrated in Table II, the GraphSPD

system can achieve up to 80.39% accuracy with a F1-score of
0.557 on PatchDB. On SPI-DB, the accuracy of GraphSPD
is 63.04% with 0.503 F1-score. Note the performances on
PatchDB and SPI-DB are not comparable because the data
distributions are different in these two datasets. PatchDB is
collected based on the similarity with NVD samples. To
construct SPI-DB, raw patches are pre-screened with security-
related keywords in commit messages. Then the filtered sam-
ples are labeled manually. We adopt both datasets as baseline
to compare our work with existing solutions in next subsection.

2) Comparison with Security Patch Detection Approaches:
We compare GraphSPD with TwinRNN over both PatchDB
and SPI-DB datasets by applying the same training and test set
splitting. The experimental results are summarized in Table II.
Effectiveness. Our GraphSPD system outperforms TwinRNN
with 10.8% higher accuracy and 0.096 higher F1-score on
PatchDB. On the SPI-DB, the GraphSPD can outperform

TABLE II: The performance comparison of GraphSPD and
RNN-based sequential model for security patch detection.

Method Dataset General Metrics Special Metrics
Accuracy F1-score Precision FP Rate

TwinRNN
[8]

PatchDB 69.60% 0.461 48.45% 19.67%
SPI-DB 56.37% 0.512 49.07% 41.57%

GraphSPD PatchDB 80.39% 0.557 77.27% 5.05%
SPI-DB 63.04% 0.503 63.96% 19.16%

TwinRNN with 6.67% higher accuracy with a minuscule drop
in F1-score (less than 0.01). Compared with the previous work,
the main difference of the GraphSPD system is to capture
more enriched syntax and semantics via graph-based patch
representation and patch-tailored feature extraction, thus the
GraphSPD is more effective than other sequential models.
Practicality. To effectively reduce the update frequency and
increase labor efficiency, precision and false positive rate are
important metrics. When performing GraphSPD on PatchDB,
Table II shows 77.27% of predicted security patches are
real security-related, and only 5.05% of real non-security
patches are misidentified. However, when using TwinRNN,
only 48.45% of predicted security patches are real, incurring
low efficiency in the practical applications. Due to the extreme
imbalance between non-security and security patches in OSS
(security ones only account for 6-10%), false positives matter
more than false negatives. Therefore, our method aims to
reduce FPR while keeping the same level of FNR. The false-
positive rate in our system is only a quarter of that in other
RNN-based systems, with the same level of false-negative
rate (56.51% for GraphSPD and 55.95% for TwinRNN). That
means in practice the number of false alarms reported by
TwinRNN is above four times more than that reported by
GraphSPD, while the number of detected real security patches
is the same. On SPI-DB, GraphSPD outperforms TwinRNN in
precision by 14.89 percentage points; the FPR of GraphSPD
is only half that of TwinRNN.

3) Comparison with Vulnerability Detection Approaches:
Due to the fact that few works use code revision to directly
identify security patches, we consider utilizing state-of-the-
art vulnerability detection tools to identify security patches
since they are supposed to detect vulnerabilities in the vul-
nerable version and cannot detect such vulnerabilities in the
patched version. We apply five effective techniques including
Cppcheck, flawfinder, ReDeBug, VUDDY, and VulDeePecker
on a dataset including 368 security patches of known CVEs
from 5 projects. We retrieve the pre-patch (vulnerable) and
post-patch (patched) code of related functions to see if these
tools can detect the security patches, i.e., detect vulnerabilities
in pre-patch code without incurring any false positives in post-
patch code. Note that we do not include non-security patches
in such a dataset since it is laborious and time-consuming
to check if the pre-patch and post-patch code contain any
potential vulnerabilities.

For VUDDY and VulDeePecker, we directly use their
provided fingerprint dictionary or training dataset to train the
model. Since ReDeBug does not provide an individual dataset
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TABLE III: Comparison results with existing vulnerability
detection methods on 368 security patches.

Method # Vulpre-patch # Vulpost-patch # Patchsecurity TP Rate

Cppcheck [20] 3 1 2 0.54%
flawfinder [21] 109 108 1 0.27%
ReDeBug [22] 29 29 0 0.00%
VUDDY [23] 22 16 21 5.71%

VulDeePecker [24] 3 0 3 0.82%
GraphSPD - - 53 14.40%

for template generation, we employ the same PatchDB dataset
to train both ReDeBug and our PatchGNN. These training
samples have no overlapping with above 368 security patches.

Table III shows the number of vulnerabilities detected in
pre-patch and post-patch code, respectively. For a security
patch, a detector may falsely report its patched version as
vulnerable, unpatched version as invulnerable, or even both
versions as vulnerable or invulnerable. Cppcheck detects 3
vulnerabilities in pre-patch code and 1 out of them is detected
as vulnerable in post-patch code, which means Cppcheck only
detects 2 security patches. Flawfinder reports 109 and 108
vulnerabilities in pre-patch and post-patch code, respectively.
Among them, the overlapping 108 vulnerabilities are detected
in both versions of code. Recall that a security patch can
only be determined if its pre-patch version is vulnerable while
its post-patch version is invulnerable. Therefore, only one
security patch can be successfully detected by Flawfinder.
ReDeBug detects 29 vulnerabilities in both pre-patch and
post-patch code, which means no security patches can be
detected. VUDDY detects 22 vulnerabilities in pre-patch code,
where 21 out of them are correctly detected as secure in
the post-patch version. Thus, 21 security patches are finally
identified. Note that these 16 vulnerabilities detected in the
post-patch code do not correspond to the same patches as
the previous 22 vulnerabilities. VulDeePecker only identifies
3 and 0 vulnerabilities in the pre-patch and post-patch code,
respectively, so it can only detect 3 security patches.

In contrast, GraphSPD detects 53 out of 368 security
patches, which outperforms the true positive rate of Cppcheck,
flawfinder, ReDeBug, VUDDY, and VulDeePecker by 13.58,
14.13, 14.40, 8.69, and 13.58 percentage points, respectively.
We conclude that vulnerability detection approaches can be
applied to detect security patches, but their performances are
not good for practical use. It shows the value of our GraphSPD
model that is dedicated to security patch detection.

4) Case Analysis: To learn how GraphSPD outperforms
other approaches, we study patch cases only detected by
GraphSPD and exemplify three scenarios (S1-S3) as follows.
S1: pre-patch code has misleading secure patterns. As
shown in Listing 4, the pre-patch code already checks
current_frame (Line 2) before operating on it (Line 6).
However, this patch (CVE-2011-3934) fixes a double free by
changing the field length (i.e., replace current_frame with
keyframe). Rule-based methods cannot detect it since its
pre-patch version looks secure, but actually it is vulnerable. As
a learning-based method, GraphSPD is capable of detecting
it since similar samples have already been included in the

training dataset, as shown in Listing 5.
1 commit 247d30a7dba6684ccce4508424f35fd58465e535
2 if (!s1->current_frame.data[0]
3 ||s->width != s1->width
4 ||s->height!= s1->height) {
5 if (s != s1)
6 - copy_fields(s, s1, golden_frame, current_frame);
7 + copy_fields(s, s1, golden_frame, keyframe);
8 return -1;
9 }

Listing 4: Security patch for a double free (CVE-2011-3934).

1 commit 360e95d45ac4123255a4c796db96337f332160ad
2 if (priv->cac_id_len) {
3 serial->len=MIN(priv->cac_id_len, SC_MAX_SERIALNR);
4 - memcpy(serial->val,priv->cac_id,priv->cac_id_len);
5 + memcpy(serial->val,priv->cac_id,serial->len);
6 SC_RETURN(card->ctx,SC_DEBUG_NORMAL,SC_SUCCESS);
7 }

Listing 5: A patch with similar patterns (CVE-2018-16393).

S2: patches involve complex control flow changes. The
security patch in Listing 6 fixes an uninitialized cred pointer
and determines control flow via cred. However, rule-based
methods cannot detect it since cred is not present in pre-patch
function (i.e., lack of key information to detect uninitialized
use). Moreover, since it is difficult to generalize rule-based
methods in complex control flow changes, it is challenging to
summarize a general rule for this case.

1 commit 3440625d78711bee41a84cf29c3d8c579b522666
2 if (IS_ERR(bprm.file))
3 return res;
4 + bprm.cred = prepare_exec_creds();
5 + res = -ENOMEM;
6 + if (!bprm.cred)
7 + goto out;
8 res = prepare_binprm(&bprm);
9 if (res <= (unsigned long)-4096)

10 res = load_flat_file(&bprm, libs, id, NULL);
11 - if (bprm.file) {
12 - allow_write_access(bprm.file);
13 - fput(bprm.file);
14 - bprm.file = NULL;
15 - }
16 + abort_creds(bprm.cred);
17 +out:
18 + allow_write_access(bprm.file);
19 + fput(bprm.file);
20 return(res);

Listing 6: Security patch for uninit use (CVE-2009-2768).

S3: unique patterns. The patch in Listing 7 shows an un-
common pattern for fixing a double free. Instead of deleting
free statements, developers can also guarantee the memory
does not get freed before the release. Since usbtv will be
freed twice via usbtv_video_free() and kfree(), this
patch increments the reference count of usb device structure
to avoid double free. Such a pattern is hard to be described in
the studied rule-based methods.

1 commit 50e7044535537b2a54c7ab798cd34c7f6d900bd2
2 usbtv_audio_fail:
3 + /* we must not free at this point */
4 + usb_get_dev(usbtv->udev);
5 usbtv_video_free(usbtv);
6 usbtv_video_fail:
7 usb_set_intfdata(intf, NULL);
8 usb_put_dev(usbtv->udev);
9 kfree(usbtv);

Listing 7: The security patch for a double free on Linux kernel.
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TABLE IV: The performance comparison of GraphSPD with
different scope of context (slicing iteration number N ).

Slicing
Iteration No. (N )

General Metrics Special Metrics
Accuracy F1-score Precision FP Rate

0 80.19% 0.555 76.11% 5.42%
1 80.39% 0.557 77.27% 5.05%
2 79.24% 0.531 73.61% 5.87%
∞ 76.90% 0.501 64.42% 8.95%

D. Performance with Different Context Scope
Context statements can assist the detection of security

patches by involving more dependencies and semantics. How-
ever, as stated in Section IV, too much context can introduce
interfering noise to the detection model. Therefore, the scope
of context will directly affect the detection performance.
We conduct experiments to evaluate the impact of different
context scope on system performance. The context scope is
represented by the iteration number of program slicing with the
added/deleted statements as criterion, which is denoted as N .
In each iteration, we extract the statements that have control/-
data dependency with current criterion statements. We evaluate
the system performance on the constructed PatchCPGs with
four different settings:
(a) N = 0: only changed statements (i.e., no slicing).
(b) N = 1: changed statements and direct context statements.
(c) N = 2: changed statements along with direct and nearest

indirect context statements.
(d) N = ∞: changed statements along with all direct and

indirect context statements.
Table IV shows that GraphSPD can achieve the best per-

formance when only considering direct context statements
(N = 1). Compared with no context (N = 0), direct context
can facilitate the security patch detection by complementing
more semantic information. The performance gets worse when
N is greater than 1, since indirect context may introduce
too much noise and provide limited valuable information.
The accuracy drops by 1.15% when N = 2, indicating that
the indirect context does not carry much relevance for the
changed code. The accuracy further drops by 3.49% when
considering all the indirect context (N = ∞), because most of
these context statements are barely correlated with the changed
statements but introduce excessive noise that significantly
interferes with the detection model.

Our experiments prove that program slicing is a straight-
forward and effective method to control the context scope,
compared with other methods (e.g., the weighting scheme in
Appendix B). The direct context provides the most valuable
information for inference, and the indirect context has limited
relevance to the changed statements but introduces noise.

E. Performance over Different Types of Patches
As a large-scale real-world dataset, PatchDB provides us

the possibility of evaluating our system performance over
different patch types, which are manually labelled according
to the types of resolved vulnerabilities. Table V illustrates the
performance of GraphSPD for different patch types, which are
ranked with the severity of corresponding vulnerabilities [38].

TABLE V: The performance of GraphSPD over patches with
different vulnerability types.

Severity Vulnerability Type of Patch Proportion TP Rate

1 buffer overflow 18% 30.9%
2 improper input validation 2% 5.8%
3 resource leakage 22% 71.4%
4 double free/use after free 5% 51.1%
5 integer overflow 5% 37.2%
6 NULL pointer dereference 12% 66.0%
7 improper authentication 4% 14.7%
8 uncontrolled resource consumption 1% 33.3%
9 race condition 7% 56.6%
10 uninitialized use 8% 27.5%
n/a other vulnerabilities 16% 16.7%

We also list the proportion for each patch type, as well as the
corresponding true-positive rate (TPR) of GraphSPD. TPR,
i.e., recall, refers the percentage of correctly detected samples
among security patches. The overall recall of GraphSPD is
43.5%, which is the same as that of RNN models.

By analyzing the performance over each type of security
patches, we have two key findings. First, for security patch
types with higher TPR, the corresponding patches exhibit
distinguishable features from non-security ones, shedding light
on the detection system design. For instance, resource leakage
is usually fixed with memory reinitialization and file opera-
tions, hence associated with memory APIs. Moreover, the race
condition fixing always utilize the lock/unlock operations to
restrict processes/threads, thus the patches are related to the
lock APIs. More detailed examples are shown in Appendix C.

Second, the security patch types with low TPR are usually
associated with security check modifications, e.g., improper
input validation, buffer overflow, and improper authentication,
which usually use if statements to restrict the operating
range. Although security check is a typical pattern for security
patches, sometimes it is easy to get mixed up with non-
security patterns since developers also like to use conditional
statements to add new features in specific cases. Seizing clues
from context becomes even more decisive in these cases. Also,
data imbalance affects detection over these security patches;
for instance, uncontrolled resource consumption only counts
for 1% in training set, providing insufficient patterns for deep
learning. This effect will be mitigated if we have more data.

F. Overhead Evaluation
Illustrated in Appendix D, 80% of PatchCPGs in our exper-

iments have fewer than 100 nodes and fewer than 200 edges,
with an appropriate graph complexity. The PatchGNN model
takes 42 min for training with 400 epochs, occupying 3 GB
RAM with the CPU usage of 32% and the GPU usage of 56%.
For detecting security patches, PatchGNN takes a mean of 8
ms for testing a single PatchCPG input.

The overhead of GraphSPD is mainly on constructing
PatchCPGs for given patch files. To evaluate the scalability of
PatchCPG construction, we apply our system to the commits
of Linux kernel, OpenSSL, and Xen. In particular, we use
all GitHub commits between version 5.17-rc1 and 5.17-rc2 of
Linux, 1.1.0i to 1.1.1, 1.1.1 to 1.1.1a, and 1.1.1a to 1.1.1b of
OpenSSL, and 4.15.0 to 4.15.1 of Xen. The size of these repos-
itories varies from 88MB to 3.5GB and number of commits
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TABLE VI: Overhead of PatchCPG generation.

Repo and Version Size #Commits #Functions #LoC T ⋆

Linux: 5.17rc1-5.17rc2 3.5GB 452 618 6,788 31.7s
OpenSSL: 1.1.1a-1.1.1b 250MB 182 398 12,438 62.3s
OpenSSL: 1.1.1-1.1.1a 250MB 168 241 6,023 41.8s
OpenSSL: 1.1.0i-1.1.1 250MB 4,959 6,709 709,460 39.6s

Xen: 4.15.0-4.15.1 88MB 101 206 3,870 37.4s
⋆ T means the average generation time per commit.

between these neighboring versions is from 168 to 4,959. The
fourth and fifth columns present the total number of revised
functions and revised lines of code (LoC) for all commits.
Based on the implementation of PatchCPG construction, the
time of PatchCPG generation is less likely related to the size of
whole repository. It mostly depends on the number of revised
lines and relevant context lines for a given patch. Therefore, as
shown in Table VI, the average time to generate a PatchCPG
is from 31.7s to 62.3s, which is acceptable in practice.

VII. CASE STUDY

Besides large-scale datasets like PatchDB and SPI-DB, we
further perform a case study on four other popular OSS to
evaluate the adaptability of our system. We select NGINX (a
web server software), Xen (a hypervisor project), OpenSSL
(a TLS/SSL and crypto library), and ImageMagick (an image
processing tool). Note that all samples used in this case study
are not included in the training set. The detection outputs of
GraphSPD are manually checked by three experienced secu-
rity researchers, who cross-check their analysis results. They
identify a security patch if it fixes a vulnerability belonging
to any CWE types. We list all security patches detected by
GraphSPD as well as our analysis results in Appendix E.
NGINX. We collect commits between neighboring major
versions from NGINX’s GitHub repository and input them
into GraphSPD after filtering out invalid commits that do not
contain source code changes. As presented in Table VII, there
are 180 commits between NGINX 1.19.0 and 1.21.0 (two
neighboring mainline versions). Our system retains 127 valid
commits that have code changes. After being transformed into
PatchCPGs and fed into PatchGNN model, 7 cases are detected
as potential security patches. We manually confirm 6 cases as
real security patches, while the NGINX changelog only shows
3 cases are reported in the CVE. Also, we perform detection
on the 1.17, 1.15, and 1.13 series. Overall, GraphSPD detects
27 potential security patches from 787 input commits and 21
out of 27 are confirmed as real security patches. The detection
precision is 78% (only 22% false alarms), which is consistent
with the performance on benchmark datasets like PatchDB,
showing the considerable generalization ability of GraphSPD.
Xen. We fetch the latest 1,170 commits (as of 11/09/2021)
from the GitHub repository of Xen and input them into our
system. The prediction results show that 29 commits are
detected as security patches. After manually checking, 16 out
of them are real security patches (i.e., 55% in precision).
OpenSSL. We test GraphSPD on the newest 1,000 commits
(as of 03/11/2022) of OpenSSL GitHub repository. GraphSPD
labels 68 commits as security patches and 45 out of them are
real security patches after verification, i.e., 66% in precision.

TABLE VII: Security patch detection results on NGINX.
Changes

w/ CVE Total
Commits

Valid
Commits

Detected
S.P.

Confirmed
S.P. Precision

1.19.x 3 180 127 7 6 86%
1.17.x 3 134 82 4 3 75%
1.15.x 1 203 120 7 4 57%
1.13.x 1 270 157 9 8 89%

Sum. 8 787 486 27 21 78%

S.P. = security patches

ImageMagick. Similarly, we retrieve the newest 1,000 com-
mits (as of 03/28/2022) of ImageMagick GitHub repository.
13 commits are detected as security patches by the GraphSPD
and we manually verify that 6 out of them are real security
patches (i.e., 46.2% in precision).
Analysis on False Positives. GraphSPD is designed to ensure
a low false positive rate. To this end, we manually check the
false positives of our system and find they mainly fall into
two categories. First, GraphSPD mislabels some non-security
patches that replace the inefficient or outdated function calls,
which are similar to security patches that replace insecure
C/C++ functions. Such cases are hard to be distinguished since
our current design does not consider the semantics of the callee
functions. The second type is about the cross-function modifi-
cation, e.g., moving statements from one function to another.
Indeed, GraphSPD can handle patches that modify multiple
functions since we simply build an individual PatchCPG for
each function and feed all PatchCPGs of a patch to PatchGNN.
However, the cross-function relations are not well captured,
and we plan to address this issue in our future work.

VIII. DISCUSSIONS

Usability. Due to different maintenance habits and policies, the
security-related commits in OSS may not be well documented.
When the commit messages are not accurate or not avail-
able, GraphSPD outperforms TwinRNN by capturing richer
semantic information from the source code. GraphSPD can
be integrated into version control platforms like GitHub for
guiding contributors to explicitly label their security commits
and speed up pushing to different branches and/or versions.
Note that our system is platform-independent, since we only
utilize source code without any requirements on patch format.
Our system can also assist users to decide the importance and
urgency of single-purpose commits/patches, which can reduce
the time window of being exploited. In addition, our system is
feasible for developers who adopt third-party libraries to iden-
tify security patches in the upstream dependencies. GraphSPD
can timely alert developers to make appropriate security fixes,
even if the downstream software is highly customized.
Limitations and Future Work. Although GraphSPD only
supports patches in C/C++ that has the most vulnerabili-
ties [31], the architecture can be adapted to other programming
languages by extending code analyzer to support correspond-
ing syntax and structures. However, it may be challenging to
collect enough samples for safe languages like Rust.

Our method is also limited to the training datasets that are
unable to cover all security patches in the real world. Specif-
ically, PatchDB only collects security patches from NVD and
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specific GitHub repositories, and SPI-DB contains security
patches only from two repositories, though they are the largest-
size publicly available datasets, to the best of our knowledge.
As a learning-based method, GraphSPD mainly learns from
the existing patterns and may not apply to the unseen ones,
and thus their performance is affected by the distributions of
the training data. In contrast, rule-based methods are driven
by the inherent rules and are not affected by the datasets, but
they may not work on samples out of the existing rules. Our
future work will improve model generalization ability and use
GraphSPD to help collect more security patches.

Our current method cannot distinguish specific security
patch types. The root cause lies in two facts: (1) some
patches are too rare to be included in training set; (2) data
is imbalanced in security patch datasets. According to the
analysis on NVD [39], 24.6% of vulnerabilities are related
to code execution, whereas only 0.1% of vulnerabilities are
HTTP response splitting. To mitigate data imbalance, we can
adopt undersampling (e.g., Tomek Links [40]) or oversampling
(e.g., SMOTE [41]) methods. Another research direction is to
train a model for each patch type since our model can be
directly transferred to specific patch detection. However, this
scheme leaves out the general patterns over security patches
and may be subject to limited data of specific patches. Also,
if fed with more data, GraphSPD can be further fine-tuned to
achieve better performance in identifying patch types.

Moreover, due to the restrictions of adopted static analysis
tool, we do not consider the call relations among multiple
functions or the semantics of callee functions. Thus, we
cannot well handle the patches that refactor statements among
multiple functions or only change the function calls. Also, it
cannot process some macros and inline assembly. As future
work, we will extend our model to apply to more situations.

IX. RELATED WORK

Patch Analysis. Li et al. [42] conducted an empirical study
of security patches, revealing multiple significant behaviors.
Soto et al. [43] conducted a large-scale study on Java patches,
providing insights into high-quality automated code repair. To
counter vulnerability-contributing commits, VCCFinder [44]
was implemented to flag suspicious patches using SVM. Tian
et al. [6] utilized textual and code features to detect bug
fixing patches in Linux. SPIDER [45] identified safe patches
that cannot interfere with normal program flows on valid
inputs. Wu et al. and Huang et al. [46], [47] developed rule-
based methods to identify some common types of security
patches. Vulmet [48] can automatically generate hot patches
for Android via learning patch semantics. Wang et al. [7]
further used random forest with extracted patch features to
classify security patches into specific vulnerability types. Re-
cent studies have also taken advantage of deep learning for
patch analysis [49], [50], [51]. PatchRNN [8] and SPI [9]
identify security patches with RNN models. Researchers also
conduct binary patch analysis, including binary diffing [52],
[53], [54], patch presence test [55], [56], [57], [58], patch
identification [59] and automated binary patching [60], [61].

Vulnerability Detection. To detect software vulnerabilities,
recent studies include fuzzing based methods [62], [63], [64],
behavior based methods [65], clone based methods [23], [37],
and deep learning based methods [24], [35], [66], [67], [68],
[69]. By fuzzing, IoTFuzzer [62] can find memory corruption
while ACHyb [63] can detect kernel access control vulnera-
bilities. SemFuzz recovers vulnerability-related knowledge and
generates PoC exploits [64]. However, fuzzing involves vast
resource and time consumption and cannot cover all possible
cases [70]. Digtool detects kernel vulnerabilities by monitoring
dynamic behaviors of kernel execution [65]. VUDDY detects
vulnerabilities based on code clones [23]. MVP detects vul-
nerabilities by signature matching [37]. Russell et al. [66]
embedded code tokens and leveraged ML models to detect
vulnerabilities. VulDeePecker [24], [35] represents a program
as code gadgets (i.e., statements mutually related in semantics)
and implements a vulnerability detection system with RNN.
Code Analysis via Graph Learning. It is natural to represent
code as graphs because of the structure of program flows [12],
[13], [71]. Due to the structured property, graphs can be uti-
lized for automatic source code summarization [72], learning
semantic program embeddings [73], and learning compiler
optimization tasks [74]. Also, code similarity can be measured
by graph learning, e.g., graph matching network [17], graph-
graph interactions [16], and graph-based twin network [75].
Researchers further leveraged the graph-based code similarity
to detect the buggy code [18]. VGraph [29] detects buggy
code reuse by matching a set of code property triplets with a
database. Graph learning can also be utilized in vulnerability
detection for different languages [76] and applications [77].
CPGVA [14] performs vulnerability detection based on code
property graphs. Devign [19] detects vulnerabilities by using a
richer set of code semantic representations, including natural
code sequence. For binary applications, Bin2vec [78] learns a
representation of binary programs via GNNs. Graph learning
is also used in binary code similarity detection [79], [80].
Asteria [79] detects binary similarity via the AST semantics.
Similarly, Zhu et al. [80] detected cross-platform binary simi-
larity using neural machine translation with graph embedding.

X. CONCLUSION

This paper presents a graph-based detection system
named GraphSPD to detect security patches with higher ac-
curacy and fewer false alarms. GraphSPD is performed in
two steps: transforming patches into PatchCPGs and detecting
security patches via PatchGNN. A PatchCPG is constructed
by merging the pre-patch and post-patch CPGs, reflecting
the control/data dependencies and program syntax as well as
the code version information. We build PatchGNN with a
multi-attributed convolution mechanism to adapt the diverse
attributes in PatchCPGs. The experimental results show that
GraphSPD can achieve up to 80% accuracy when identifying
security patches in various repositories, with a low false-
positive rate of 5%. In addition, our case study on four real-
word projects further validates the effectiveness and practical-
ity of GraphSPD by identifying 88 silent security patches.
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APPENDIX A
NETWORK ARCHITECTURE OF PATCHGNN

The detailed network architecture of PatchGNN is listed in
Table VIII. Note that MultiAttrConv contains 5 GraphConv
layers, which reduce the dimension by half.

TABLE VIII: PatchGNN network architecture in GraphSPD.

Layer Input Output Comments

MultiAttrConv1 20 50 1/2, concat aggregate
MultiAttrConv2 50 25 1/2, mean aggregate
MultiAttrConv3 25 12 1/2, mean aggregate

Maxpool 12 12
Meanpool 12 12

Concat 12 24 max + mean pooling
Dropout 24 24 p = 0.5, only for training

FC1 24 8 bias = True
ReLU 8 8
FC2 8 2 bias = True

Softmax 2 2

The PatchGNN training curve is illustrated in Figure 7.
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Fig. 7: The training curve of the PatchGNN model.

APPENDIX B
COMPLEMENTARY ANALYSIS ON CONTEXT STATEMENTS.

As described in Section IV, there is a trade-off between
semantics and noise when considering context statements in
PatchCPGs. Besides the program slicing scheme, we also
try other ways to reduce the impact of irrelevant nodes and
prevent over-fitting. One attempt is to use different weights to
present the importance of context nodes. That is to say, for the
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Fig. 8: The impact of different weights for the context nodes.

PatchCPGs without slicing, we set weights (≤ 1) to the context
nodes, artificially intervening the contextual information.
1) Set weights based on different types of context nodes.
Not all the nodes in a graph contribute equal to the predic-
tions. Due to the different roles of CDG, DDG, and AST,
a straightforward idea is to set 3 component weights (i.e.,
weightCDG, weightDDG, and weightAST) for different context
nodes. In the cases that a context node exists in two or
more components, the weight is determined by the largest
component weight applicable to this node. To evaluate the
impact of different component weights, we utilize the control
variates method: we measure the detection accuracy by setting
one weight to different values and leaving others to 0s. The
experimental results are shown in Figure 8(a)-(c). We conclude
our observations as follows:
(a) The weighting scheme has lower accuracy than code

slicing since we still retain all irrelevant nodes without
any control/data dependency with the changed code.

(b) The detection accuracy will reduce with the increase of
all these component weights.

(c) Compared with CDG, the accuracy can drop more sig-
nificantly with higher DDG or AST weights.

(d) A higher weightAST will dramatically reduce the accuracy
since too many AST nodes can lead to over-fitting (see the
4th finding in Appendix D). Thus, it is better to remove
AST components for context nodes (i.e., weightAST = 0).

2) Set weights based on the distance of context nodes.
Another trial is to decide the weights according to the distance
of context nodes towards the added/deleted nodes (i.e., hop
count). The objective of this method is to assign larger weights
for more direct context. We define a distance weight as
weightDIST = 1/(1 + d), where d is the min hop count
between a context node and changed nodes, e.g., the distance
weight of 1-hop context nodes is 1/2. In this trial, the context
node weight is the product of component weight and distance
weight. We conduct multiple comparative experiments to an-
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alyze the impact of weightDIST with different combinations
of component weights. Based on the previous observations,
we set weightAST = 0 and weightCDG ≥ weightDDG in the
experiments. In Figure 8(d), we find the distance weight can
effectively boost the performance because it inhibits the effect
of irrelative context nodes far away from the changed ones.
However, since we achieve the best performance with 1-hop
context only, we do not add context weights in our final design.

APPENDIX C
PATTERN ANALYSIS OF SECURITY PATCHES

We find some security patch types (e.g., resource leakage,
NULL pointer dereference, race condition, and double free/use
after free) exhibit distinguishable features. Accordingly, exper-
iments show GraphSPD achieves a higher TP rate in these
specific types. We further look into each patch type and
summarize the unique patterns, which are reflected in our
feature extraction of PatchCPG (Section V-A).
1) Resource Leakage. We find 3 patterns for resource leakage:
re-initialization, memory operations, and file operations.
(a) Re-initialization. An effective method to mitigate mem-

ory leakage vulnerability is to re-initialize the memory
space to default values, such as 0s. An example:
+ memset(&link, 0, sizeof(link));

(b) Memory Release. Resource leakage may occur when
software developers forget to release the memory. Thus,
the corresponding patches will involve memory function
calls such as release() and free(). An example:
+ free(*appliance);

(c) File Close. Information can be leaked via the unreleased
file pointer. Therefore, the corresponding patches will in-
volve file function calls such as fclose(). An example:
+ if (file != NULL)

+ fclose(file);

2) NULL Pointer Dereference. The vulnerability of NULL
pointer dereference occurs when using an invalid pointer
without checking its value. Therefore, the patches will use
sanity checks (if statements) to verify the validity of pointer
before usage. Moreover, the conditions always involve NULL,
which accords with our feature of null identifiers. Example:
+ if (tmpjobid == NULL)

+ return(NULL);

3) Race Condition. Race condition occurs when the system at-
tempts to execute two or more operations simultaneously. The
effective method to avoid race condition is to use lock/unlock
operations to restrict the processes and threads. Therefore, the
patches are usually related to the lock APIs. An example:
+ mutex_lock(&pool->pool_lock);

list_add(&ce->node, &pool->curlring);

pool->curls++;

+ mutex_unlock(&pool->pool_lock);

4) Double Free/Use After Free. Double free occurs when
free() is called more than once with the same memory
address. Use-after-free occurs when using an invalid memory
that has already been freed. We sum up 4 common patterns:
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Fig. 9: The CDFs of nodes and edges in security patches (SP)
and non-security patches (NSP).

(a) Remove Second Use/Free. For double free, a straightfor-
ward fixing method is to remove the extra free operation.
The patch is related to the memory APIs. An example:
- free(comment_header);

(b) Move Use Before Free. For the use-after-free, some
patches will move the statements to the lines before the
free operation. We detect this type of security patches
using the control dependency in PatchCPG. An example:
+ atomic_dec(&chip->active);

if (!chip->num_interfaces)

snd_card_free(chip->card);

- atomic_dec(&chip->active);
(c) Initialize Pointer to NULL. To prevent using an invalid

pointer, developers can initialize the pointer to NULL and
use it. An example:
+ info->port = NULL;

(d) Check Before Use. To exclude invalid pointers, develop-
ers can check the validity before using the pointer. The
patches can add corresponding sanity check. An example:
- *image = (rbd_image_t)ictx;

+ if (r >= 0)

+ *image = (rbd_image_t)ictx;

APPENDIX D
STATISTICAL PROPERTIES ABOUT PATCHCPG

We try to analyze the statistical properties about PatchCPGs
from a broad perspective. Our goal is to find some patterns
of patches by observing the statistical results. We measure the
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cumulative distribution functions (CDFs) about 8 graph com-
ponents for security and non-security patches, respectively.
These graph components include 3 types of nodes (i.e., 1-hop
context, added, deleted) and 5 types of edges (i.e., pre-patch,
post-patch, CDG, DDG, AST). From the statistical results in
Figure 9, some interesting findings have already emerged.

1) 80% of graphs are quite small. In Figure 9, we find
80% of PatchCPGs have fewer than 100 nodes and fewer
than 200 edges, which is crucial for the PatchGNN model
to prevent over-fitting. More complex graphs mean more
complex information processing, raising the requirement
to increase model complexity and enlarge training dataset.

2) Security patches have a smaller graph size. Statisti-
cally, the mean node (edge) amount of security patches is
smaller than that of non-security ones. The reason is that
security patches focus on fixing vulnerabilities and only
modify a few critical statements. Non-security patches
usually add new functionality features, thus involving
more statement changes. However, the size distributions
of two patch types do not support a certain threshold to
distinguish security and non-security patches.

3) Significantly more nodes are added than are deleted.
For both security and non-security patches, more nodes
and edges emerge in the post-patch graphs since develop-
ers tend to add new statements into the source code. That
might be the reason why the software always become
more and more bloated after the updates.

4) AST is more numerous than DDG and CDG. We find
CDG and DDG are fewer in PatchCPG while AST is the
most common type. We can even ignore the AST with
limited resources because the AST information is already
contained in the main statement nodes (the roots of AST)
and high graph complexity can easily lead to over-fitting.

APPENDIX E
DETECTED SECURITY PATCHES IN NGINX, XEN,

OPENSSL, AND IMAGEMAGICK

In Section VII, GraphSPD detects 21 security patches in
NGINX. However, none of them have been assigned with a
corresponding CVE ID or are documented as a security fix
in the NGINX’s changelog. Moreover, 6 out of 21 commits
only have a commit subject without detailed commit messages,
and 4 commits do not mention security impacts in the subjects
or messages. Similarly, other security commits detected from
the GitHub repositories of Xen, OpenSSL, and ImageMagick
by the GraphSPD are also not linked with a CVE entry or
explicitly documented with potential security impacts.

Note that we do not mean that maintainers of NGINX or
others intend to hide their security patches. Instead, we under-
stand that the patch labeling is subjective and maintainers may
think CVEs are unnecessary for these bugs/vulnerabilities.

In practice, the CVE assignment is quite subjective
and sometimes inconsistent among different CVE Number-

ing Authorities (CNAs). For instance, even for the same
memory-cache side-channel vulnerability in both LibreSSL
and OpenSSL, the CVE Numbering Authority of Last Re-
sort (CNA-LR) created CVE-2018-12434 for LibreSSL, but
OpenSSL’s CNA refused to assign a CVE for it [5].

Besides CVE, maintainers can also use changelog and
commit messages to recognize a security patch. But, due to
different maintenance habits or policies, some security impacts
may not be documented well (e.g., inaccurate terminology
or jargon), which makes users hard to locate these security
patches for prioritized use. Given the fact that maintainers
of software repositories may not provide sufficient security-
related information explicitly, our system can help admins be
more aware of potential security-related patches.

In Table IX, we list all the security patches successfully de-
tected by the GraphSPD with their commit IDs and manually
analyze their corresponding vulnerability types.

TABLE IX: List of detected security patches in Xen, NGINX,
OpenSSL, and ImageMagick.

Repo Commit ID Vuln Type Commit ID Vuln Type

Xen

d670ef3401 uninitialized use 1ef48c82e7 use after free
29fae90baa null pointer deref 939775cfd3 null pointer deref
ff522e2e91 buffer overflow 9dc46386d8 uninitialized use
e0ca7b883a null pointer deref 5a3f7a05a3 null pointer deref
f2c620aa06 uninitialized use 0bdaa8b035 null pointer deref
8e76aef728 race condition 243036df0d null pointer deref
ff3e7e7681 null pointer deref cd09c4929e resource leak
79b6574f8e resource leak 8a62dee9ce resource leak

NGINX

60a8ed26f3 resource leak 9a3ec20232 resource mgmt err
327e21c432 infinite loop cfa669151e resource mgmt err
bd7dad5b0e buffer overflow 4ee66b3f7b resource leak
4cd1dd28dd use after free c3fd5f7e76 resource leak
36dfa020f2 resource leak 5784889fb9 null pointer deref
52d9da8790 resource leak 7e3041b79f use after free
278be041dd infinite loop dac90a4bff resource leak
4ac8036e78 resource leak cdbdbbd842 resource mgmt err
661e40864f resource mgmt err 92111c92e5 buffer overflow
b0b24e8a30 resource leak aa04b091ae null pointer deref
9359155b2f uninitialized use

OpenSSL

1832bb0f02 integer overflow 885d97fbf8 uninitialized use
b2f90e93a0 resource leak fb0f65fff8 race condition
b3c34401c0 resource leak f99b34957f double free
7a85dd46e0 null pointer deref 1b4d9967a2 resource leak
10481d3384 resource leak dc7e42c6a1 null pointer deref
68b78dd7e4 null pointer deref 79cda38cff resource leak
04e3ab64d5 null pointer deref 5266af8737 null pointer deref
c81eed84e4 resource leak 8d215738a0 null pointer deref
09dca55733 null pointer deref 0ce0c45586 resource leak
da7db7ae6d resource leak 0c5905581e null pointer deref
7f1cb465c1 null pointer deref ab547fc005 null pointer deref
922422119d resource leak 814999cb44 race condition
74b485848a resource leak 963eb12dbd resource leak
8c590a219f null pointer deref 5327da81f0 resource leak
fa17f5c987 resource leak 981a5b7ce3 resource leak
f5c0f69619 null pointer deref e20fc2ee4f buffer overflow
0449702abc double free 70cd9a5191 uninitialized use
b9648f31a4 null pointer deref 8086b267fb resource leak
6889ebff01 resource leak 433e13455e null pointer deref
366a162639 resource leak 7ca3bf792a double free
2823e2e1d3 buffer overflow 4e92d5c79d buffer overflow
09f38299cc resource leak ed5b26ce0b null pointer deref
09134f183f null pointer deref

Image-
Magick

d61dd34fe0 resource mgmt err 3dc9db61ac resource leak
8a41ce827d uninitialized use f9c35c91ba resource leak
2df3d0124b resource leak 225b51d7f2 resource leak
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