
TYPEPULSE: Detecting Type Confusion Bugs in Rust Programs

Hung-Mao Chen∗, Xu He∗, Shu Wang∗†, Xiaokuan Zhang∗, Kun Sun∗
∗George Mason University

†Palo Alto Networks

Abstract
Rust supports type conversions and safe Rust guarantees the
security of these conversions through robust static type check-
ing and strict ownership guidelines. However, there are in-
stances where programmers need to use unsafe Rust for cer-
tain type conversions, especially those involving pointers.
Consequently, these conversions may cause severe memory
corruption problems. Despite extensive research on type con-
fusion bugs in C/C++, studies on type confusion bugs in Rust
are still lacking. Also, due to Rust’s new features in the type
system, existing solutions in C/C++ cannot be directly applied
to Rust. In this paper, we develop a static analysis tool called
TYPEPULSE to detect three main categories of type confusion
bugs in Rust including misalignment, inconsistent layout, and
mismatched scope. TYPEPULSE first performs a type conver-
sion analysis to collect and determine trait bounds for type
pairs. Moreover, it performs a pointer alias analysis to resolve
the alias relationship of pointers. Following the integration of
information into the property graph, it constructs type patterns
and detects each type of bug in various conversion scenar-
ios. We run TYPEPULSE on the top 3,000 Rust packages
and uncover 71 new type confusion bugs, exceeding the total
number of type confusion bugs reported in RUSTSEC over
the past five years. We have received 32 confirmations from
developers, along with one CVE ID and six RUSTSEC IDs.

1 Introduction

Rust [42] is an emerging programming language known by its
strict enforcement of type safety and memory safety through
compile-time checking, without sacrificing runtime perfor-
mance. Since memory safety issues in unsafe languages such
as C and C++ have been known to lead to catastrophic con-
sequences, Rust has become an appealing solution to re-
place C and C++, and it has been adopted in major open-
sourced projects such as the Linux kernel [65] and the Firefox
browser [35]. Recently, the White House also calls for adop-
tion of memory-safe programming languages such as Rust to
secure the cyberspace [23].

Rust is fundamentally divided into two separate sub-
languages: safe Rust and unsafe Rust [62]. Safe Rust enforces
strict compile-time checks to maintain memory safety and
type safety. However, these checks can be excessively re-
strictive, blocking some essential but risky operations like
accessing raw pointers. To address this, Rust introduces the
unsafe keyword for such situations. When employing unsafe
Rust, it falls upon the programmer to uphold memory safety
since the typical compile-time checks are circumvented.

Similar to traditional programming languages such as
C/C++, Rust also supports type conversions [43], where a
variable is initially converted from type A to type B and sub-
sequently accessed as type B. Safe Rust guarantees the secu-
rity of these conversions through robust static type checking
and strict ownership guidelines. Rust automatically infers the
types of variables and expressions from their context and use.
Also, the ownership feature helps ensure memory and concur-
rency safety by tracking the lifetime and borrowing at compile
time [28]. Nevertheless, there are instances where program-
mers need to use unsafe Rust for certain type conversions,
especially those that involve pointers. For instance, since di-
rect reference conversions are not allowed, conversions must
be first made at the raw pointer level and then converted back
to references using unsafe Rust. Consequently, these conver-
sions may cause severe memory corruption problems similar
to those found in C/C++ [36–38]. In the last five years, RUST-
SEC [10] has reported 32 type confusion bugs that can lead to
various memory-safety issues such as data leaks, uninitialized
memory, and Out-Of-Bounds (OOB) memory access.

Despite extensive research on type confusion bugs in C
and C++ [18, 21, 26, 29], studies on type confusion bugs in
Rust are still lacking due to three significant challenges. First,
the conversion of data types between functions complicates
type analysis, and this complexity cannot be addressed us-
ing traditional interprocedural analysis. For instance, when
a type constructor function creates an instance of a type that
is then handed off to another function for an unsafe type con-
version, traditional interprocedural analysis fails to track the
constructor function as it is absent from the conventional call

graph [31]. Therefore, a new call graph is needed to identify
this type of interprocedural type conversion.

Second, predicting all possible concrete types that can re-
place a generic type in Rust is inherently challenging. Unlike
C and C++, Rust uses trait bounds [12] to constrain generic
types, ensuring they conform to specific behaviors and ca-
pabilities. It adds complexity since trait bounds can have
implicit and recursive dependencies on other traits. Moreover,
concrete types may encompass composite types like struct.
As a result, a method of generic type resolution that adheres
to the trait bounds is needed.

Third, identifying type confusion bugs requires establishing
whether the pointer alias remains valid after type conversion,
which is essential for our bug verification process. However,
the ownership and lifetime features in Rust increases the com-
plexity when undertaking pointer analysis. In C++, existing
techniques primarily address the issue of pointer access via
alias analysis [20, 30, 32]. Nevertheless, traditional alias anal-
ysis needs modification to accommodate the pointer variable
ownership and lifetime in Rust. For example, when ownership
is transferred to another pointer or the pointer is automatically
deallocated, the original pointer variable becomes invalid,
which cannot be detected by existing techniques.

To tackle these challenges, we develop TYPEPULSE, a
static analysis tool to detect type confusion bugs in Rust
applications. It consists of two main components, namely,
Property Graph Constructor and Bug Detector. By examining
each function within the crate, property graph constructor
creates a new call graph that helps identify the type construc-
tor functions, addressing the first challenge. Property graph
constructor performs type conversion analysis and pointer
alias analysis. Type conversion analysis is conducted to col-
lect type pairs (i.e., <source type, destination type>) and trait
bounds for generic types through dependency resolution. It is
employed to address the second challenge. Pointer alias anal-
ysis will construct a new alias graph, representing the alias
relationship of the pointers. When ownership is transferred or
dropped, property graph constructor updates the alias graph
to reflect the node connections, which can solve the third chal-
lenge. As the final output, each function in the property graph
is associated with type pairs, trait bounds, and the pointer alias
graph. The property graph will be utilized by bug detector to
analyze and verify the type confusion bugs.

Next, bug detector utilizes the property graph to perform
type conversion checks and access checks. First, type con-
version checks are used to identify if the type conversion
creates an invalid type pointer. Second, access checks will
be performed to analyze if the invalid type pointer can be
accessed. Via analyzing the type pairs and trait bounds, we
summarize three patterns of type confusion bugs, namely, mis-
alignment, inconsistent layout, and mismatched scope, to help
locate invalid type pointers. When performing access checks,
bug detector will first traverse the alias graph to determine if
the invalid type pointer is accessible, then verify the absence

of developer-enforced check, which is manually implemented
by developers to prevent the type confusion bugs. After veri-
fication, the bug report will be delivered with the unsafe type
conversion and type access highlighted.

We implement a prototype of TYPEPULSE with 5249 lines
of Rust. To assess TYPEPULSE’s effectiveness in bug identifi-
cation, we first execute it on the type confusion bugs reported
to RUSTSEC from 2019 to 2024. The findings show that
TYPEPULSE can successfully identify all reported type con-
fusion bugs. Next, we perform a large-scale study by running
TYPEPULSE on the top 3,000 popular packages ranked on
crates.io and GitHub. We detect 71 new type confusion
bugs and report all of them to their package developers. We
receive 32 confirmations on the reported bugs at the time of
writing. The new bugs occur in many high-profile reposito-
ries. For example, we demonstrate that the type confusion bug
within the pprof package can cause the downstream applica-
tions to crash (e.g., GreptimeDB with 4.2k stars on GitHub).
Contributions. This paper makes the following contribu-
tions:
• We analyze all type confusion bugs in RUSTSEC in the last

five years and identify the three most prevalent categories
of type confusion bugs, namely, misalignment, inconsistent
layout, and mismatched scope.

• We design and implement the first static analysis tool
(TYPEPULSE) to detect type confusion bugs in Rust, ad-
dressing the challenges of interprocedural type conversion,
generic type resolution, and alias analysis due to the unique
features of Rust.

• We evaluate TYPEPULSE on the top 3,000 Rust pack-
ages and identify 71 new type confusion bugs which we
have manually confirmed, surpassing the total number of
bugs reported in RUSTSEC in the last five years. We also
run TYPEPULSE on existing type confusion bugs and it
achieves 100% accuracy, demonstrating the robustness of
TYPEPULSE.

2 Background

2.1 Rust Basics

Generic Types and Traits. Rust provides the flexibility of
code reuse and type safety with generic types and traits [4,50].
By writing code in a type-agnostic manner, generic types al-
low functions, methods, or data structures (e.g., struct) to
operate on multiple types, which are represented by the place-
holder (e.g., T, U). Since the generic types will be replaced by
the actual types at the compile-time (i.e., monomorphization),
it can prevent the type confusion bugs at run-time. In addition,
traits can be used to specify the constraints on generic types.
By applying a trait to a generic type, Rust ensures that the
type used to replace the generic type should also implement
the required methods or characteristics defined by the trait.

crates.io
crates.io
GitHub

For example, the function fn display<T: Copy>(input:
T) ensures that only the type implementing the Copy trait can
be initialized as the argument input.

Safe vs. Unsafe Rust. The central concept of safe Rust is to
confirm memory ownership during compilation, where the
compiler checks both the access and the lifetime of memory-
allocated objects (or values). Moreover, safe Rust permits the
borrowing of a value (i.e., making a reference to it) through-
out the lifetime of the owner variable. In contrast, unsafe is
used to highlight code segments that perform tasks that are not
ensured by the compiler, placing the responsibility on devel-
opers to prevent memory safety issues. In Rust, there are five
specific actions necessitating the unsafe keyword [63]: deref-
erencing raw pointers, invoking unsafe functions, altering or
accessing mutable static variables, defining unsafe traits, and
executing inline assembly. Each of these actions could breach
Rust’s safety assurances. Unsafe Rust is crucial because it
allows developers to interface with low-level system APIs,
libraries written in other languages, or hardware directly.

Undefined Behaviors. Undefined behavior (UB) refers
to the program whose outcome is not prescribed by the
language’s specification, which means that the language
standard does not define what should happen if the UB occurs.
In most cases, the result can only be decided by hardware
and architectures, leading to inconsistent consequences in
different environments. The outcomes of UB are unpre-
dictable, ranging from security vulnerabilities to incorrect
compiler optimization and code generation. The backend
of the compiler might perform the optimization based on
the assumption that the UB will not occur. Therefore, we
should prevent UB from happening. Rust clearly defines
scenarios that might trigger undefined behaviors [64], such
as dereferencing null pointers, accessing out-of-bounds array
elements, and data races when mutating shared data without
synchronization. The design of unsafe help us narrow down
the culprit of UB to the code related to unsafe code.

2.2 Type Conversion in Rust

Type conversion from the source type (src_ty) to the
destination type (dst_ty) consists of two steps: 1 Con-
version, which involves altering or reinterpreting the bit
pattern of a variable from one type (src_ty) to a new type
(dst_ty), and 2 Access, which involves accessing the
variable as the new type (dst_ty). rustc limits developers
to performing only explicit type conversions to maintain
safety with compile-time verifications. These conversions can
be implemented through type casting, transmute operations,
and traits [50]. Given that traits are typically handled by
casting and transmute methods, our discussion will focus
solely on casting and transmute operations.

Casting Operation. The type-casting operation depends on
the keyword as, which is mainly used for secure and direct

1 fn main() {
2 let source_ty: u8 = 1;
3 // compile error: non-primitive cast
4 let dest_ty = &source_ty as &u32;
5 // Alternative 1: as
6 let tmp_ty = &source_ty as *const u8 as *const u32;
7 let dest_ty = unsafe {&*tmp_ty};
8 // Alternative 2: transmute
9 let dest_ty = unsafe {

10 transmute::<&u8, &u32>(&source_ty)
11 };
12 }

Listing 1: Type conversion between pointers in unsafe code.

type conversions, including conversions between basic data
types and raw pointers. The use of as generally involves
straightforward bit manipulations or adjustments in values.
For example, when an f32 is converted to an i32, the frac-
tional component of the floating point number is removed.
Consequently, using as can result in data truncation or loss.
It’s important to note that under the stringent regulations es-
tablished by rustc, as can be employed in the safe code.

Transmute Operation. Compared to as, the transmute
function facilitates more intricate and dangerous transforma-
tions. Essentially, transmute performs a bitwise copy from
one type to another without altering the bit pattern of the
value. However, it modifies the interpretation of these bits by
rustc. For instance, it allows for the direct conversion of an
i32’s bit pattern to an f32, despite their fundamentally dif-
ferent representations. The validity of the original bit pattern
in the new type is not assured, making transmute extremely
risky and prone to causing undefined behaviors. Consequently,
transmute necessitates the use of unsafe code.

Type Conversion between Pointers. In Rust, pointer-type
conversions can be achieved through casting and the use of
transmute operations. However, Rust imposes various restric-
tions depending on the pointer types involved, meaning that
some conversions are safely handled by Safe Rust, while
others require the use of the unsafe keyword. For example,
in Listing 1, Safe Rust prohibits direct conversion between
reference types (line 3), forcing developers to resort to two
methods within unsafe code. The first method involves con-
verting the reference of the original type to a raw pointer,
followed by its conversion to another raw pointer (line 5).
To acquire a reference of the new type, developers must first
dereference the raw pointer and then form a new reference
(line 6). As dereferencing a raw pointer is not allowed in Safe
Rust, the use of unsafe code becomes unavoidable. Alterna-
tively, the transmute function can be used directly to convert
references (line 9), which must be used with the unsafe key-
word due to its inherent risks. Such conversions in Unsafe
Rust are prone to type conversion errors because the memory

Table 1: The details of 32 reported Type Confusion Bugs on
RustSec advisories (2019-2024).

Year Type I Type II Type III Others

2019 2019-0035 - 2019-0028 -

2020
2020-0035
2020-0050

2020-0029
2020-0078
2020-0079
2020-0080
2020-0081

2020-0029
2020-0165

2020-36317
2020-0073
2020-0164

2021
2021-0120
2021-0121
2021-0145

2021-0021
2021-0035

2021-0019
2021-0089 2021-0044

2022 2022-0041
2022-0052
2022-0074 2022-0092

2022-0034
2022-0078

2023 - -
2023-0015
2023-0055 -

2024 - 2024-0347 2024-0001 -

address remains the same for both pointers (&src_ty and
&dst_ty), while only the interpretation of the type changes.

3 Overview

3.1 Motivating Examples
We investigate all bug reports related to type confusion bugs
in the RUSTSEC advisories in the last five years [10]. There
are 32 reports but only 26 type confusion bugs; The remaining
six bugs are out of consideration because they are related to
other memory safety problems, such as Use-After-Free, which
can be handled by existing tools [15, 17, 33, 44]. The Bug IDs
are listed in Table 1. We categorize the 26 bugs into three
types based on their root causes, which are misalignment,
inconsistent layout, and mismatched scope. All 26 bugs are
related to pointer type conversion (i.e., references and raw
pointers) in Unsafe blocks. In this section, we introduce the
three bug types and their security impacts.
Type I: Misalignment Bug. The first type of bug occurs
when the type is converted to another type leading to align-
ment violation. The alignment of a type specifies the valid
memory address at which the type should be stored. Given
the alignment value as n, the type must be stored only at the
address of a multiple of n. Some types have a fixed alignment
regardless of the target architectures, while others could be
platform-specific. For example, the type of i32 has both 4-
byte alignments on the 32-bit or 64-bit target. In contrast, the
types of usize and isize are aligned to 4 bytes on the 32-bit
target and 8 bytes on the 64-bit target. The alignment require-
ment can be easily violated with pointer-type conversion since
two pointers remain in the same memory address. Although
the memory address is aligned for src_ty, it might not be
aligned for dst_ty if not handled carefully. In the Listing 2,
the method fill_bytes allows the slice of u8 to be cast onto
the slice of u32 (line 9). Since u8 is aligned to 1 byte, the slice
of dest can be stored at the arbitrary memory address. When

1 #[cfg(any(target_arch = "x86",
2 target_arch = "x86_64"))]
3 fn fill_bytes(&mut self, dest: &mut [u8]) {
4 // ...
5

6 while filled < end_direct {
7 let dest_u32: &mut R::Results = unsafe {
8 &mut *(dest[filled..].as_mut_ptr() as
9 *mut <R as BlockRngCore>::Results) };

10 self.core.generate(dest_u32);
11 filled += self.results.as_ref().len() * 4;
12 self.index = self.results.as_ref().len();
13 }
14 // ...
15 }

Listing 2: A misalignment bug in rand_core that casts bytes
slices to integer slices (RUSTSEC-2019-0035 [54]).

it turns out to be accessed as u32, it is not guaranteed that the
memory address can be multiple of 4 since u32 is aligned to
4 bytes, leading to the misaligned pointer dereference. Note
that developers of rand_core consider that the issue could be
avoided by limiting the target architectures to x86 or x86_64
only since these architectures are designed to tolerate mis-
aligned memory access. However, the alignment requirement
is enforced by the compiler instead of these target architec-
tures. Once the Rust compiler verifies that safe code adheres
to alignment rules, it generates optimized machine code based
on this assurance. However, if unsafe code violates these rules,
it can cause undefined behavior or crash the program.
Type II: Inconsistent Layout Bug. The second type of bug
occurs when src_ty and dst_ty have different memory lay-
outs. In Listing 3, the method as_ref allows casting between
Table and TableSlice and returns the reference to the new
type (line 20). However, when the struct type in Rust inher-
its the default representation (e.g. repr(Rust)), the compiler
may reorder the memory layout, such as the fields of struct.
The results of GDB show that after the raw pointer to Table
is converted to the TableSlice, the fields rows of Table and
one of TableSlice point to different memory addresses (line
26 and line 28), leading to inconsistent lengths of rows (line
27 and line 29). It could impact applications that rely on the
value (e.g., rows.length). For example, when applications
plan to print all the data stored in table format to the termi-
nal, the API (TableSlice::print_tty) converts Table to
TableSlice first and iterates the data stored in rows. Since
iterating slice relies on the length (line 29) while the number
of elements is actually only one (line 27), printing table leads
to invalid memory access and segmentation fault, which has
been reported in RUSTSEC-2022-0074.
Type III: Mismatched Scope Bug. The third type of bug
occurs when we break the invariant by creating an invalid
bit pattern or modifying the mutability of types. In List-
ing 4, the trait ComponentBytes is designed to provide a

1 pub struct Table {
2 format: Box<TableFormat>,
3 titles: Box<Option<Row>>,
4 rows: Vec<Row>,
5 }
6

7 pub struct TableSlice<'a> {
8 format: &'a TableFormat,
9 titles: &'a Option<Row>,

10 rows: &'a [Row],
11 }
12

13 impl<'a> AsRef<TableSlice<'a>> for Table
14 fn as_ref(&self) -> &TableSlice<'a> {
15 unsafe {
16 let s = &mut *(
17 (self as *const Table) as *mut Table
18);
19 s.rows.shrink_to_fit();
20 &*(self as *const Table as *const TableSlice<'a>)
21 }
22 }
23

24 // from gdb results
25 // $8 as &Table, $7 as &TableSlice
26 p &$8.rows // 0x7ff..82f0
27 p &$8.rows.len // 1
28 p &$7.rows // 0x7ff..82e0
29 p $7.rows.length // 93825009397280!

Listing 3: An inconsistent layout bug in prettytable-rs
that casts a &Vec to &[T] (RUSTSEC-2022-0074 [56]).

method as_bytes_mut to modify the type T as byte slice.
The type T could be any type that implements the traits
Copy, Send, Sync, and lifetime bound static. However,
the trait and lifetime bounds here cannot prevent the issues
caused by the problematic type conversion implemented
in as_bytes_mut. It allows casting between mutable raw
pointers (slice.as_mut_ptr() as *mut u8) to create an
invalid state for types since two pointers are pointing to over-
lapping memory. Safe Rust enforces aliasing rules, where
mutable and immutable references can not exist simultane-
ously, while unsafe Rust allows the rule to be bypassed, as
shown in the exploit (line 21 - 27). The attacker creates an
immutable reference pointing to the static string as the type T.
With as_bytes_mut, the mutable raw pointer to the slice of
string casts to the mutable raw pointer of u8 type. Since the
function returns a mutable reference to a slice of u8, the at-
tacker is allowed to modify any values in the slice of u8. How-
ever, the mutable reference bytes and immutable reference
component point to the same data, breaking the aliasing rules
of safe Rust. While the attacker modifies the value in bytes,
he also changes the value of component, which should not be
mutated originally. One security consequence of modifying
immutable data is data races. In a multi-threaded environment,
if the immutable object can be modified through a mutable ref-
erence while other threads are reading it, the outcome could be

1 pub trait ComponentBytes<T: Copy + Send + Sync + 'static>
2 where Self: ComponentSlice<T> {
3 fn as_bytes_mut(&mut self) -> &mut [u8] {
4 let slice = self.as_mut_slice();
5 unsafe {
6 slice::from_raw_parts_mut(
7 slice.as_mut_ptr() as *mut _, ..)
8 }
9 }

10 }
11

12 impl<T> ComponentSlice<T> for [RGB<T>] { .. }
13

14 impl<T> RGB<T> {
15 pub const fn new(r: T, g: T, b: T) -> Self {
16 Self {b, g, r}
17 }
18 }
19

20 // exploit for type III bug
21 let component: &'static str = "Hello, World!";
22 let new_rgb = RGB::new(component, .., ..);
23 let mut rgb_arr = [new_rgb; 3];
24 let bytes = rgb_arr.as_bytes_mut();
25 bytes[0] += component.len() as u8;
26 // now, we can modify static memory
27 println!("{}", rgb_arr[0]);

Listing 4: A mismatched scope bug in rgb that allows
viewing and modifying data of any type wrapped in
ComponentSlice<T> as bytes (RUSTSEC-2020-0029 [55]).

unpredicted or even lead to a program crash. In addition, appli-
cations usually rely on the static variable for security checks or
maintaining a global state, which means that mutating the im-
mutable data can also help attackers bypass security checks.

3.2 Challenges and Insights
The Rust type system’s features, such as ownership, trait
bounds, and generic types, present challenges that cannot
be directly addressed using existing methods in C and C++.
We use the example of the mismatched scope bug to illustrate
the three challenges.
Interprocedural Type Conversion. In Listing 4, TYPE-
PULSE identifies that the as_bytes_mut function performs a
risky type conversion from a generic type to u8 on line 7, po-
tentially leading to a type confusion bug. To confirm the pres-
ence of this bug, TYPEPULSE must determine if the type is
converted between functions. Line 3 indicates that type self
is initialized by a constructor function then passed to the cur-
rent function. However, finding the constructor is a challeng-
ing problem that traditional call graphs cannot address. For
instance, the type of [RGB<T>] implements ComponentSlice
(refer to line 12) but must be initialized via the new function
shown on line 15. Traditional call graphs can locate callers
of as_bytes_mut, but the type constructor is not typically a
direct caller (see lines 22 and 24). To address this issue, we

identify the constructor by matching converted types to the
return types of external functions via a new data structure
called Property Graph.
Generic Type Resolution. To predict the concrete types that
can initialize generic type T, we first analyze trait bounds.
The generic type T is constrained by four trait bounds:
Copy, Send, Sync, and ’static. Suppose we only enumer-
ate the types directly involved in these trait bounds; we only
get some internal types, such as RGB<ComponentType> and
BGR<ComponentType>. Since ComponentBytes is a public
trait, the user can initialize it with external user-defined types,
such as str for the generic type (line 21). To address such an
issue, we extend type conversion analysis to resolve the trait
bounds. First, if these traits are also bounded by other traits,
we need to parse the dependencies recursively. Second, if the
function is public, we must consider all the primitive types
and composite types that external users could initialize. There-
fore, we collect traits and primitive types defined in standard
libraries. For the composite types, we build the struct type
from primitive fields. Finally, bug detector can leverage the
trait bounds to generate a type set. The type set includes all
possible types that may be implicitly implemented and satisfy
the trait bounds.
Alias Analysis. To verify the existence of the bug, it is crucial
for us to determine whether the pointer alias remains valid af-
ter the type conversion (whether we can access rgb_arr after
line 24). The pointer type conversion on line 7 is translated to
_8 = move _9 as *mut u8 (PtrToPtr) in the Mid-level
Intermediate Representation (MIR [6]) of the Rust compiler.
move represents the transfer of ownership of a value to
another, which means _9 is not accessible anymore. However,
the previous alias of _9 still point to the same memory
address. Therefore, slice on line 4 is still accessible after the
ownership of its mutable pointer (_9) is transferred, leading
to mismatched scope bug when accessing rgb_arr[0] (line
27). To precisely identify the alias relationship between
the pointers, we analyze whether the pointer’s ownership
is transferred based on different forms of instruction in the
Rust program. In the Listing 4, pointer alias analysis helps
us verify that the parameter (&mut self) points to the same
memory location as the u8 pointer (&mut [u8]), and whether
the parameter remains accessible after returning.

3.3 Detection Scope
We target the type confusion bug arising from the pointer type
conversions and specify the type conversion behavior to be
implemented with as and transmute operations, represent-
ing the most fundamental ways to conduct type conversion
in Rust. In particular, TYPEPULSE focuses on the three most
prevalent bug types mentioned in §3.1. We do not consider the
type conversion performed on non-pointer types, so the bugs
such as integer overflow [57, 58] arising from downcast are
excluded. Errors arising from foreign function interfaces [3]

Bug
Report

Peoperty Graph Constructor Bug Detector

Type Conversion
Analysis

Access Check
Pointer Alias

Analysis

Invalid

Property
Graph

Developer-
Enfored Check

Crate

Misalignment

Inconsistent
Layout

Mismatched
Scope

Type Conversion
Check

No Check

Accessed

Fig. 1: An overview of TYPEPULSE.

are also out of scope, as addressing them would require de-
veloping a system that is compatible with other programming
languages’ compilers.

4 TYPEPULSE

To facilitate the detection of type confusion bugs, we de-
sign and implement a static analysis tool called TYPEPULSE.
This tool consists of two main components: Property Graph
Constructor and Bug Detector (see Fig. 1). Given the Rust
code, property graph constructor first utilizes the compiler to
translate the source code into the MIR. It then performs type
conversion analysis and pointer alias analysis to construct
property graph. The property graph includes the type conver-
sion pairs and the pointer alias graph. Besides, trait bounds
are provided to bug detector for generic type resolution. Given
the type conversion pairs, bug detector first performs the type
conversion check with three different patterns to capture the
invalid type pointer, Then, the access check is run to deter-
mine whether the invalid type pointer can be accessed through
the alias graph. Finally, bug detector verifies if there are any
developer-enforced checks implemented to handle the invalid
type pointer. If no, TYPEPULSE produces a bug report with
the problematic type conversion highlighted.

4.1 Property Graph Constructor

The goal of property graph constructor is to collect the re-
quired information and then integrate them into the property
graph, which can accelerate the interprocedural analysis of
bug detector. In addition to the results of type conversion
analysis (§4.1.1) and pointer alias analysis (§4.1.2), each func-
tion is associated with its return types, assisting in finding
the type constructor functions. For example, given a func-
tion new_as_slice, it calls the type constructor function new
and passes the constructed type to the function as_slice as
src_ty. To obtain new function, we match src_ty with the
return types of other functions in our property graph, which
could find all potential type constructors. After that, we can
further analyze the type conversion across the functions. In
addition to return types, the function including unsafe code
will be marked for analysis in bug detector.

Algorithm 1 get_trait_bounds()
Input : f n, trait_map, visible
Output :trait_bounds
trait_bounds← HashSet::new();
foreach trait_bnd ∈ f n.get_bnd_by_sig() do

if trait_bnd ∈ trait_map then
trait_bounds.insert(trait_bnd);

end
else

if trait_bnd.has_supertraits()&&visible then
// call get_trait_bounds() on supertraits again

end
else

trait_bounds.insert(trait_bnd);
end

end
end
return trait_bounds;

4.1.1 Type Conversion Analysis

The type conversion analysis has three steps, namely, analyz-
ing if type conversion includes any generic type, determining
if generic type is converted across functions, and resolving
the dependencies to collect the trait bounds on generic types.
In the first step, property graph constructor directly keeps the
concrete type pair if no generic type is included. It starts with
visiting the MIR’s statements [52] and finding the ones of
type conversion. Rust’s MIR is a simplified version of the
Abstract Syntax Tree (AST) used for optimization. It con-
sists of statements and terminators [53]. Statements represent
intermediate operations such as assignments and variable ini-
tialization, and terminators define control flow decisions such
as conditions or function calls. In the statement of type con-
version (src_ty, dst_ty), if both src_ty and dst_ty are
the concrete types, property graph constructor will keep the
type pair directly. If one of the (src_ty, dst_ty) is a generic
type, property graph constructor will move on to the second
step, which is visibility analysis.
Visibility Analysis. The visibility of a function decides how
external users can call the function. In Rust, functions and
methods are both blocks of reusable code. The difference
between a function and a method is that the method is as-
sociated with a particular type or defined within a trait. It is
typically called using the "." operator on the type instance. If
the generic type conversion occurs in the method, we should
determine whether the associated types can only be initialized
by type constructor functions. In such cases, we analyze the
visibility of all associated types and recursively traverse the
types fields if it is a struct type. The visibility result repre-
sents if the type can be initialized by external users or limited
by constructor functions. If visible, trait bound analysis will be
conducted to collect the type constraints for the generic type.
Trait Bound Analysis. We collect a set of traits from standard
libraries, which are implemented by all primitive types in
Rust, indicating the potential concrete types to replace generic
types (see algorithm 1). We also extract certain traits from

external libraries used to prevent type confusion bugs, helping
to reduce false alarms in bug detection. For example, the trait
plain [40] is always used to ensure that the memory layout
is stable and initialized. As we have confirmed the specific
types implementing these traits (trait_map), we utilize them
as the endpoint of the traversal, effectively tackling the issue
of implicit dependencies. For each trait bound, property graph
constructor first checks whether the trait is defined in the trait
set. If not defined, property graph constructor then checks
whether the trait has dependencies (has_supertraits()).
The output of this step also generates the type conversion pairs
including generic type and associated with the trait bounds.

4.1.2 Pointer Alias Analysis

Pointer alias analysis is used to construct an alias graph, which
helps us determine the relation between pointers and how
the pointer can be accessed (see algorithm 2). The analy-
sis is performed in MIR for semantic information [6], e.g.,
whether a value is moved or borrowed and if the value is dead.
The nodes in the alias graph are collected from the Local in
the MIR, which refers to the "variables and temporary val-
ues in the scope of function" [51]. The edges between the
nodes are updated when the MIR statement is in the forms of
StorageDead and Assign form, where Rvalue is assigned
to Lvalue. Based on the kinds of Rvalue appearing in the
statement of Assign, pointers have different alias relation-
ships.

a = Ref(b)

= RawPtr(b)

= Cast::(PtrToPtr, Operand(b))

= Cast::(Transmute, Operand(b))

(1)

In Equation 1, when the kind of Rvalue is Ref or RawPtr,
which means a new reference or raw pointer a is created and
points to the same memory location as b. If the kind of Rvalue
is Cast, especially on the pointers, a also points to the same
location as b. In our alias graph, we will create the edge from
a to b to represent the alias relationship, where they are both
local. However, we disconnect the edge from a to b when
the kind of Operand in Cast is Move. The operand of Move
means that the ownership of b is transferred to a, and b will no
longer be accessible, so we disconnect the edge. In addition
to the statement in the Assign form, we also disconnect the
edge in the form of StorageDead. Given StorageDead(a),
it is used to mark that the ownership of a is transferred and all
pointers of a become invalid. Therefore, we delete all edges
created from a in our alias graph.

a = Call(Fn, args<Operand(b)>, ..) (2)

Equation 2 presents a function call in MIR, where args
works as a list of arguments that are passed to the function and
a holds the return value. For each argument in args, we create
the edge from a to b, but disconnect the edge if the operand on

Algorithm 2 get_alias_graph()
Input : f n
Output :alias_graph
foreach st ∈ f n.statements do

if st ∈ Assign then
(lval, rval)← (st.lvalue(), st.rvalue());
op← rval.get_operand();
kind ← st.rvalue().kind();
if kind ∈ Re f |RawPtr|Cast :: PtrToPtr|Transmute then

// insert rval.id() to alias_graph[lval.id()]
if op == Move then

// delete rval.id() from alias_graph[lval.id()]
end

end
end
else if st ∈ StorageDead then

rval ← st.rvalue();
// delete all elements from alias_graph[rval.id()]

end
end
foreach tm ∈ f n.terminators do

kind ← tm.kind();
if kind == Call(func, args, dest) then

foreach arg ∈ args do
// insert arg.id() to alias_graph[dest.id()];
op← arg.get_operand();
if op == Move then

// delete arg.id() from alias_graph[dest.id()]
end

end
end

end
return alias_graph

the argument is Move. In bug detector, the connection of a and
b in the alias graph is leveraged to perform interprocedural
alias analysis. , the alias_graph is constructed as a directed
graph where the edge always starts from the local in lvalue
to the one in rvalue. When identifying pointer aliasing, we
will check whether two nodes have common descendents in
alias_graph. Finding the common descendent represents that
one alias of the src_ty’s pointer is aliased with the dst_ty’s
pointer, then bug detector will collect all descendants while
traversing the graph with breadth-first search [66] from two
nodes, then find whether there is an intersection between two
sets of descendants.

4.2 Bug Detector

Bug detector focuses on the marked functions in property
graph (with unsafe), capturing type confusion bugs in three
steps. First, given the pairs of type sets generated by type con-
version analysis, type conversion check is performed to find
the invalid type pointer following three kinds of bug patterns.
Second, access check is used to find the alias of the invalid
type pointer based on pointer alias analysis. Based on the alias
graph, it checks if the pointer is accessed in the function or
accessible to the caller function. Third, verifying the absence
of developer-enforced check helps reduce the false alarms

of bugs. All three steps are combined with interprocedural
analysis based on property graph.

4.2.1 Type Conversion Check

We categorize the type conversion (src_ty, dst_ty)into three
possible scenarios: (Con→ Con), (Con→ Gen), and (Gen
→ Con). The conversion between (Gen→ Gen) is excluded
since we observe that such a conversion would be rejected by
the TypeId check [13]. The check strictly requires two types
sharing the same layout. When generic type conversion errors
are identified, the trait bounds linked to the generic type are
mapped to the ty_set, which has been verified to implement
these traits in property graph constructor. The detection logic
for each bug type and each scenario is shown in Table 2.
Misalignment Detector (Type I). Misalignment detector can
easily compute the alignments to identify the bugs; however,
it is not possible to predict the alignment of generic types that
depend on runtime input. To solve the challenge, we will use
ty_set to simulate the input to generic types.
Bug Definition. When src_ty’s alignment is not a multiple of
dst_ty’s alignment, it will create a misaligned pointer.
Type Conversion. In the scenario of (Con → Con), mis-
alignment detector directly locates the type conversion by
computing the violation of alignment requirements (i.e.,
src_ty.align % dst_ty.align != 0), and then we
will mark the dst_ty’s pointer as an invalid type pointer. In
the scenario of (Con→ Gen), we need to traverse all candi-
date types in ty_set to ensure each type obeys the alignment
requirements. If any candidate type violates the requirement,
we mark it as an invalid pointer. When ty_set is empty, it
means that the generic type can be initialized with arbitrary
types since no trait bounds are found. In this case, we will
also mark dst_ty’s pointer as an invalid pointer. In the scenario
of (Gen → Con), the detector follows the same logic as in
(Con→ Gen) to mark the invalid pointer. The difference is
that dst_ty can not be aligned to only one byte even when the
ty_set is empty. The reason is that any memory address can
be a multiple of one where the misaligned pointer will not be
created. In some cases, misalignment detector may fail since
the types are imported from external packages. To solve the
challenge, we heuristically extract the information from the
symbol names of types based on the cases we have studied
(e.g., extract u8 from external::u8_bytes). Since we only
run our tool on the machine of 64-bit architecture; however,
some type’s alignment is platform-specific, where the value
changes based on different architectures. Take usize and
isize for example, on a 32-bit target, they are aligned to 4
bytes while on a 64-bit target, they are aligned to 8 bytes. In
Misalignment Detector, we will consider different alignment
values for these types in the type conversion.
Inconsistent Layout Detector (Type II). To detect the incon-
sistent layout bug, we define two type sets: unstable_ty and
stable_ty. unstable_ty represents the type that can change the

Table 2: Type conversion checks.
Bug Type Con→ Con‡ Con→ Gen Gen→ Con

Type I
Input: src_ty, dst_ty
If src_ty.align % dst_ty.align != 0

mark

Input: src_ty, ty_set
If ty_set.is_empty()

mark
Else

replace dst_ty with each in ty_set
run again in (Con→ Con)

Input: dst_ty, ty_set
If ty_set.is_empty() & dst_ty.align != 1

mark
Else If ty_set.not_empty()

replace src_ty with each in ty_set
run again in (Con→ Con)

Type II

Input: src_ty, dst_ty
If src_ty→ unstable_ty

If dst_ty→ (stable_ty | unstable_ty’)
mark

Input: src_ty, ty_set
If ty_set.is_empty()

If src_ty→ unstable_ty
mark

Else
replace dst_ty with each in ty_set
run again in (Con→ Con)

Input: dst_ty, ty_set
If ty_set.is_empty()

If dst_ty→ (stable_ty | unstable_ty’)
mark

Else
replace src_ty with each in ty_set
run again in (Con→ Con)

Type III

Input: src_ty, dst_ty
if src_ty→ weak_ty

If dst_ty→ strict_ty
mark

Else If src_ty→ strict_ty
If dst_ty→ mut weak_ty

mark

Input: src_ty, ty_set
If ty_set.is_empty()

If src_ty→ weak_ty
mark

Else If src_ty→ strict_ty && mut dst_ty
mark

Else
replace dst_ty with each in ty_set
If (s,d)⋆ → (weak_ty, strict_ty)

mark
Else If (s,d)→ (strict_ty, mut weak_ty)

mark

Input: dst_ty, ty_set
If ty_set.is_empty()

If dst_ty→ strict_ty
mark

Else If dst_ty→ weak_ty && mut dst_ty
mark

Else
replace src_ty with each in ty_set
If (s,d)→ (weak_ty, strict_ty)

mark
Else If (s,d)→ (strict_ty, mut weak_ty)

mark

‡ Con: concrete type; Gen: generic type; ⋆ (s,d): (src_ty, dst_ty).

memory layout at runtime (e.g., struct, union, trait object),
where the compiler preserves the rights to insert padding bytes
or reorder the fields. Another type set stable_ty consists of
scalar types (e.g., bool, char, integers). Inconsistent Layout
Detector will perform further analysis on the representation
of types (e.g., repr(Rust), repr(transparent), repr(C)).
Any type conversion in unstable_ty set or across unstable_ty
and stable_ty sets would be recognized as a problematic type
conversion and create an invalid type pointer. In addition, we
need to combine with ty_set to extend the scenarios of generic
type conversion.

Bug Definition. When the layout of src_ty is not stable and
inconsistent to dst_ty, it will create an invalid type pointer.

Type Conversion. If the detector finds the conversion happens
in (unstable_ty→ stable_ty), it will mark the dst_ty’s pointer
as an invalid type pointer since the padding bytes can be
exposed when we accessed them as a scalar type. The second
pattern is (unstable_ty → unstable_ty), inconsistent layout
detector will further check if they follow the same Application
Binary Interface (ABI) [2], which determines if src_ty and
dst_ty share same layout based on their symbol name of type.
If they have different type symbol names, dst_ty’s pointer will
also be marked as an invalid type pointer. In the scenarios of
(Con→ Gen) and (Gen→ Con), they follow the same logic
to check when the arbitrary types or the limited types in ty_set
could make the type conversion match the two patterns above.

Mismatched Scope Detector (Type III). In order to find the
bug efficiently, we define two type sets based on the scope of
values: weak_ty and strict_ty. weak_ty represents the type that
has a weak constraint on its bit pattern, such as integer and
float type. In contrast, strict_ty means a strong limitation on
the bit pattern, such as bool, string, and character. If the type
is found to be a composite type, which has multiple fields,
mismatched scope detector will analyze each field and define
it as strict_ty if one of the fields is included in strict_ty. The
type conversion between weak_ty and strict_ty can create a
type with an invalid bit pattern.

Bug Definition. There are two patterns of conversion that can
create an invalid type: 1) src_ty belongs to weak_ty while
dst_ty belongs to strict_ty. 2) src_ty and dst_ty are in strict_ty
and weak_ty, while dst_ty’s pointer is mutable. In these two
types of conversions, an invalid type pointer can be created.

Type Conversion. If the detector finds the conversion in
(weak_ty→ strict_ty), it will mark the dst_ty’s pointer as an
invalid type pointer since the bit pattern of src_ty could be in-
valid for dst_ty. When the conversion is found in (strict_ty→
weak_ty), mismatched scope detector will take a further anal-
ysis on whether the dst_ty is mutable since changing the bit
pattern of dst_ty can also make src_ty invalid. In the scenarios
of (Con→ Gen) and (Gen→ Con), the detector follows the
same logic to check whether the type conversion is performed
between weak_ty and strict_ty with mutability analysis.

4.2.2 Access Check

Access check is performed to analyze how the invalid type
pointer captured by Type conversion check can be accessed.
The analysis can be separated into two steps: 1) check whether
the pointer is accessed in the function, and 2) analyze whether
the pointer is accessible for the caller function. As the first
step, to check whether dst_ty’s pointer is accessed in the func-
tion, we focus on the dereference in statements and the un-
safe function calls in the terminators of the MIR. For state-
ments, we check whether dst_ty’s pointer is aliased with the
dereferenced pointer. For unsafe function calls, we collect
a list of unsafe functions that are widely used in the core li-
braries of Rust, such as ptr::read/copy, ptr::as_ref, and
slice::from_raw_parts, which requires the pointer refers
to an aligned, consecutively initialized type. The access list for
mismatched scope detector also includes other APIs such as
str::from_utf8_unchecked or CStr::from_ptr. These
functions require types to be encoded with the specific bit
patterns. Access check will verify whether the pointer passed
in these unsafe functions is aliased with the dst_ty’s pointer.

In the second step, to check whether dst_ty’s pointer is
accessible for the caller function, we analyze whether the
dst_ty’s is aliased with the return type only when the return
type is a reference. When the return type is a raw pointer,
accessing it requires the unsafe block since Rust does not
guarantee the safety of the raw pointer. Since using unsafe
highlights the responsibility for the bugs and we only consider
the function that performs the problematic type conversion
to be the culprit of bugs, we will set up the requirement for
the return type to be a reference in the second step. After
access check ensures that the pointer of invalid dst_ty can be
accessed, the bug report will be generated as the output of
bug detector.

4.2.3 Developer-Enforced Check Analysis

Developer-Enforced Check is usually used by the developers
to prevent type confusion bugs manually. Through examining
these checks, we can confirm that the developer has handled
the type conversion errors, further reducing the false alarms
of TYPEPULSE. We categorize them into two scenarios: Pre
Type Check and Post Type Check, where the check inserted
before and after type conversions, respectively.

We summarize various patterns of developer-enforced
checks that address type confusion bugs individually. First,
the pre type checks used to prevent misalignment bugs include
calling align_of and alloc, which are used to check and as-
sign memory layout before the type conversion. There is also
a post type check that the developer uses to safely load the
misaligned type e.g., read_unaligned. Second, for the in-
consistent layout bug, pre type check is used to guarantee the
memory is completely initialized. The typical patterns include
using size_of to restrict the size at run-time. For example,
if the struct contains two fields of u32 types, developers can

check if the size of the struct type is 8 bytes, further ensuring
that no padding bytes are inserted. The post type checks such
as ptr::write, which can be used to access the uninitialized
memory, will also be detected before TYPEPULSE raises the
alarms for the bugs. Detecting developer-enforced checks for
scope mismatch bugs is challenging because developers often
use runtime value comparisons.

4.2.4 Integration of Interprocedural Analysis

Interprocedural analysis plays an essential role in confirming
the presence of the type confusion bug. In this section, we
describe how it is incorporated into bug detector.
Type Conversion Check. We can use it to identify type con-
versions between functions. For instance, consider (Con→
Con), where we notice an unsafe type casting from a u8
pointer to a u16. According to our misalignment bug criteria,
this should trigger an alert. Nevertheless, through interpro-
cedural analysis, we identify a type conversion from a u16
pointer back to u8 in the caller function. As a result, the
src_ty should be u16 and properly aligned to two bytes,
which means that there is no any misalignment. Considering
another case with generic type (Gen→ Con) and type conver-
sion being detected in a method, we leverage property graph
to identify the type constructor function and analyze the type
conversion pairs in the method.
Access Check. Given that the type may not be accessible
within the current function, we also examine the callee func-
tions, such as a raw pointer dereference. Additionally, we
gather certain unsafe standard library functions, which in-
volve type access, accelerating the verification of type access.
Developer-Enforced Check Analysis. Developer-Enforced
Check could also exist in external functions. In other words,
it can be implemented in callers, type constructors, or callees.
Thus, TYPEPULSE must analyze all reachable functions to
locate the related type checks.

4.3 Implementation
TYPEPULSE is developed with 5249 lines of code in Rust,
utilizing rustc and fully integrating with Cargo, Rust’s offi-
cial package manager. TYPEPULSE focuses on target files
that can be compiled into an executable or a library [48].
Using Cargo, we address dependency issues prior to com-
pilation and identify all targets in the package suitable for
analysis. Compilation of these target files is done through
rustc. Upon completion, TYPEPULSE is activated within the
after_analysis callback function of the rustc driver, which
is triggered by rustc following the generation of Rust com-
piler’s MIR, allowing us to employ the resulting MIR data as
input for property graph constructor to start the analysis.

The workflow of TYPEPULSE can be divided into two
phases: 1) detecting if the type conversion generates a prob-
lematic dst_ty, and 2) checking if the problematic type is

Table 3: Bugs identified by TYPEPULSE; note that we have
only listed the bugs that have been reported for over three
months as of January 1, 2025.

Package Version Stars Bug Types‡ and Numbers Status∗ Patched†

candle-core 0.4.1 13.2k Con→ Gen: I:3 (as) -
py-spy 0.3.14 11k Con→ Con: I:1 (as) # -

fyrox-core 0.27.0 7.1k Con→ Gen: I:1 (as)
Gen→ Con: II:4 (as), III:2 (as) ✓

gfx-backend-gl 0.9.0 5.2k Con→ Gen: I:1 (as) -
silicon 0.5.2 3.1k Con→ Con: II:1 (as) # -
webrender 0.61.0 3k Con→ Con: I:2 (as) -
spl-token-swap 3.0.0 2.3k Con→ Gen: I:1 (as), III:1 (as) -
scryer-prolog 0.9.4 1.9k Con→ Con: I:6 (transmute) -
libafl 0.10.1 1.6k Con→ Con: I:3 (as), III:4 (as) ✓
mesalink 1.1.0 1.5k Gen→ Con: II:1 (as) # -
fontdue 0.8.0 1.2k Gen→ Con: I:1 (transmute) -

pprof 0.13.0 1k Con→ Con: II:1 (as)
Con→ Gen: I:1 (as) ✓

rendy-core 0.5.1 814 Gen→ Con: II:2 (as) G# -
rendy-util 0.4.1 814 Gen→ Con: II:2 (as) G# -
sciter-rs 0.5.58 784 Gen→ Con: I:1 (as) -
rosrust 0.9.11 728 Gen→ Con: II:3 (as) III:1 (as) G# -
cortex-m 0.7.7 669 Gen→ Con: II:1 (as) ✓
rafx-base 0.0.15 574 Gen→ Con: II:2 (as) G# -
xous 0.9.50 500 Con→ Gen: I:2 (as), III:2 (as) ✓

∗ Bug status: #: Reported; : Confirmed by Vendors; G#: Verified by PoC.
† Patch status: ✓: already patched; -: unpatched.
‡ Bug type: Con: concrete type; Gen: generic type; [I, II, III]: bug type.

accessed. With pairs of type sets generated by type conver-
sion analysis, we can find a problematic type conversion even
when a generic type is involved. With the alias graph built
by pointer alias analysis, we can track how the pointer can
be accessed. The type conversion pairs and alias graph are
stored in property graph, which accelerates the interprocedu-
ral analysis to obtain the information of external functions.
For interprocedural analysis, we introduced a depth limitation
to avoid the path explosion problem. We set the path length
to 1 (tracing only the immediate caller or callee function),
aligning with that in Rupta [31].

5 Evaluation

Dataset Collection. We gathered packages from crates.io,
the Rust community’s crate registry. To ensure comprehensive
bug detection, The dataset consists of the packages ranked
by download counts and the number of GitHub stars (as of
September 1, 2024), and each of them has more than 500 stars.
Regarding package size, the largest package contains 510k
LoC, with an average package size of 9k LoC.

Experiment Setup. We built TYPEPULSE and conducted
experiments on a server with 48-core Intel Xeon CPU ES-
2630 and 256 GB memory. The server was deployed with
Ubuntu 22.04 and rustc 1.72.0-nightly. For each package, we
set the preparation (dependencies resolution and compilation)
time threshold to 20 minutes and TYPEPULSE detection time
threshold to 2 minutes. We ran TYPEPULSE on the 3,000
packages for detection.

0 20 40 60 80 100 120
Execution Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Fig. 2: Detection time of TYPEPULSE.

5.1 Bug Detection Results

First, we ran TYPEPULSE on the RUSTSEC dataset of ex-
isting type confusion bugs as of September 1, 2024 (see Ta-
ble 1). TYPEPULSE is capable of detecting all existing type
confusion bugs of three types. Second, we ran TYPEPULSE
with 16-thread to scan the 3,000 packages. It ran 18 hours
in total; the majority of time was spent on resolving depen-
dencies and compilation. The detection time only took about
80 mins and 94 bugs were reported. For the 3,000 packages,
618 (20.6%) failed due to compiler version, 37 (1.2%) did
not have proper cargo metadata, and 309 (10.3%) failed with
custom build options, which cannot be resolved automatically
and required manual work. All the remaining 2,036 pack-
ages (67.9%) could successfully compile within 20 minutes.
Among them, 282 did not have /bin or /lib targets for de-
tection, so TypePulse did not execute on them. For 1,754
packages that TypePulse ran detection on, the average de-
tection time was 1.71s. Among the 1,754 packages, 1,483
were completed within 1s; 1,652 were completed within 5s;
only 59 needed more than 10s to complete; 5 packages did
not finish execution within 2 minutes. The CDF figure of the
detection time is shown in Fig. 2. We manually verified these
bug reports and confirmed that 71 of them were true positive,
indicating an overall precision of 75.5%. The information on
packages and bugs that have either been confirmed or reported
for over three months is provided in Table 3. Many bugs we
detected are not trivial. Among the 71 type confusion bugs
detected by TYPEPULSE, there are 50 bugs found in packages
with more than 1,000 stars on GitHub. These packages are
well known in the Rust community and are usually maintained
well by professional teams. For example, candle-core [25]
is developed by a famous AI company (Hugging Face) [24].
Therefore, our results suggest that even domain experts may
write error-prone code in Rust.

Capability to Find New Bugs. To facilitate the resolution of
these bugs, we also created a Proof of Concept (PoC) to report

Table 4: The results of detectors on top 3,000 packages.

Detector Metrics Bug Types OverallI II III

TypePulse
TP 32 24 15 71
FP 6 4 13 23

Precision 84.2% 85.7% 53.6% 75.5%

TypePulse
w/o IPA

TP 32 24 13 69
FP 11 6 13 30

Precision 74.4% 80% 50% 69.7%

IPA: Interprocedural Analysis.

identified issues to package maintainers, which requires locat-
ing undefined behaviors in packages based on the diagnostic
information produced by TYPEPULSE. To trigger potential
bugs, we need to create the appropriate src_ty and dst_ty be-
fore invoking the problematic conversion. We consider two
distinct scenarios. First, when the source and destination vari-
ables are openly accessible, such as through public members
within a class, we can directly create these variables. Second,
when the source and destination variables are private and not
directly accessible, a constructor is required to initialize the
variables. Additionally, TYPEPULSE helps find feasible con-
structor functions, which also accelerates the PoC generation.

At the time of writing, we have documented all the issues
(71) that we have manually confirmed, and 32 of these have re-
ceived acknowledgment responses from the package maintain-
ers. After notifying the maintainers, we further reported these
issues to the RUSTSEC advisories and CVE database. So far,
we have received six RUSTSEC IDs and one CVE ID, and are
awaiting confirmation and releases for the remaining ones.

5.2 False Positive Analysis

According to Table 4, there are 23 instances of false posi-
tives. There are 2 arising from misidentifying function visibil-
ities and 3 from developers’ tricks to prevent invalid pointer
exposure. Here we investigate the remaining 18 cases that
arise from misinterpretation during the developer-enforced
check analysis. It shows that TYPEPULSE cannot understand
complex condition semantics in checks, especially when the
check is implemented in an unusual way. Considering Listing
5 for example, TYPEPULSE considers the method to_str
could construct an illegal string from an array of u8, which
might contain a non-utf8 character. After manually studying
the type constructor function (new) and the method used to
insert characters into the string (push), we find that the char-
acters in the string are restricted to be utf8 by the encoding
at line 15 (encode_utf8). This complex encoding makes it
difficult for TYPEPULSE to avoid false alarms in detecting
Mismatched Scope Bugs. So far, TYPEPULSE can only de-
tect standard developer-enforced check patterns and several
unsafe APIs with clear safety documentation. It is challeng-
ing for TYPEPULSE to understand such encoding operations.

1 impl<const N: usize> String<N> {
2 pub fn new() -> String<N> {
3 String { bytes: [0; N], len: 0 }
4 }
5 pub fn to_str(&self) -> &str {
6 unsafe {
7 str::from_utf8_unchecked(&self.bytes[0..]) }
8 }
9 pub fn push(&mut self, ch: char) -> Result<..> {

10 match ch.len_utf8() {
11 1 => { ... }
12 _ => {
13 let mut bytes: usize = 0;
14 let mut data: [u8; 4] = [0; 4];
15 let subslice = ch.encode_utf8(&mut data);
16 // ...

Listing 5: The false positive case of Mismatched Scope bug.

We will extend the capability of TYPEPULSE to interpret
developer-enforced check in future work.

5.3 Impacts of Interprocedural Analysis
We conduct an ablation study to demonstrate TYPEPULSE’s
capabilities in reducing false positives by disabling interpro-
cedural analysis (refer to the second row in Table 4). TYPE-
PULSE reduces 6 more false positives and detects 2 more true
positives with interprocedural analysis enabled. Scanning
3k packages, TYPEPULSE obtains the results with precision
75.5%, consisting of 71 True Positives and 23 False Positives.
After disabling the interprocedural analysis, TYPEPULSE’s
precision is reduced to only 69.7%, consisting of 69 True
Positives and 30 False Positives. This comparison result high-
lights that interprocedural analysis can significantly enhance
precision by analyzing the context across functions. First, it
can detect the positive cases relying on external functions
to decide the bit patterns – 2 more mismatched scope bugs
were detected. Second, it can reduce the false alarms in cases
with developer-enforced checks – 7 more False Positives were
reduced. For example, in the package of arrow-buffer, dis-
abling interprocedural analysis will cause four more false
positive cases of misalignment bugs. The Listing 6 shows
a false positive case mitigated by interprocedural analysis.
TYPEPULSE first locates suspicious type conversion at line
20 since it finds that the pointer of buffer is cast to arbi-
trary generic type. However, the generic type cannot be con-
trolled by attackers since as_slice is a method relying on
BufferBuilder and casting MutableBuffer to generic type.
The constructor function of MutableBuffer cannot be lo-
cated by traditional interprocedural analysis because it is not
the caller of the method. TYPEPULSE implements the func-
tionality to find out the constructor functions by matching the
type to the ones returned from other functions. In this exam-
ple, TYPEPULSE locates the function with_capacity, which
returns MutableBuffer as the constructor function. After an-

1 impl MutableBuffer {
2 #[inline]
3 pub fn with_capacity(capacity: usize) -> Self {
4 let layout = Layout::
5 from_size_align(capacity, ALIGNMENT).unwrap();
6 let data = match layout.size() {
7 0 => dangling_ptr(),
8 _ => {
9 let raw_ptr = unsafe {

10 std::alloc::alloc(layout)
11 };
12 // ...
13 Self { data, len: 0, layout }
14 // ...
15 impl<T: ArrowNativeType> BufferBuilder<T> {
16 #[inline]
17 pub fn as_slice(&self) -> &[T] {
18 // ...
19 unsafe { std::slice::from_raw_parts(
20 self.buffer.as_ptr() as _, self.len) }
21 // ...

Listing 6: The false positive case resolved by interprocedural
analysis.

alyzing the constructor function, TYPEPULSE finds that the
constructor function already guarantees the alignment of type
with Layout::from_size_align; therefore, this should be
a false alarm. Without interprocedural analysis, TYPEPULSE
cannot detect the developer-enforced check implemented in
the constructor function.

5.4 Comparison with Existing Tools

To the best of our knowledge, TYPEPULSE is the first bug
detection tool to systematically detect type confusion bugs
in Rust, so we are unable to find similar tools to perform
an apple-to-apple comparison. we choose the tools that are
able to partially detect type confusion bugs for comparison:
Clippy [9] and Rudra [15]. We run them on the packages
listed in Table 3 and compare the results. The comparison
results are shown in Table 5. Additionally, we compare the
performance of TYPEPULSE to the Rust’s type system on
the existing type confusion bugs in RUSTSEC dataset (see
Table 1).
Comparison with Clippy. Clippy is a static analysis tool
that implements more than 650 types of lints [67] to
detect common errors in the Rust program. Clippy sup-
ports 2 types of lints to find the unsound usages of as
and transmute. First, it can check whether as can lead
to a misaligned pointer (cast_ptr_alignment [1]). Sec-
ond, it can check whether transmute occurs between
types of different Application Binary Interfaces (ABIs)
(unsound_collection_transmute [2]). The version of
Clippy with which we compare is 0.1.72, and Table 5 re-
veals that Clippy identifies only 10 relevant bugs, all of which

Table 5: Comparison with Clippy and Rudra.
Detector Type I Type II Type III Overall

Clippy 10 0 0 10
Rudra 0 0 0 0

TYPEPULSE 32 24 15 71

are misalignment issues (Type I) restricted to Con→ Con
(21 bugs in total). Regarding the remaining 11 misalignment
bugs, one warning is intentionally suppressed by develop-
ers, four arise from overlooking variations in ABIs, and six
involve transmute. We summarize two main reasons for
Clippy’s limitation as follows. Firstly, Clippy fails to iden-
tify potential bugs involving generic types, as the two lint
checks are only carried out when both the source type and
dest type are concrete. Secondly, Clippy does not have a
comprehensive approach to identifying type conversion er-
rors. It is observed that Clippy’s checks vary between as
and transmute; misalignment checks are applied to as but
omitted for transmute. For inconsistent layout bugs, checks
are conducted exclusively on transmute. Furthermore, upon
reviewing developer comments, it is observed that developers
often disregard the warnings due to their belief that Clippy
generates a significant number of false positive cases.

Comparison with Rudra. Rudra [15] is the bug detector
that can be used to capture memory safety bugs from Rust
packages. We compared TYPEPULSE with Rudra for two
reasons. First, Rudra is the state-of-the-art memory safety
bug detector, reporting 51.6% of all memory safety bugs.
Second, Rudra claims it can find the bugs of uninitialized
memory exposure, which is the result of inconsistent layout
bugs. Our evaluation results show that Rudra can find five
bugs of uninitialized memory. However, none of them occurs
in the type conversion process, which means it is not effective
in detecting type confusion bugs. The main reason is that,
for the patterns of type conversion, Rudra only detects the
terminators at the MIR level. Unfortunately, transmute has
been translated to statements rather than terminators since
2021. Moreover, Rudra implements the dataflow checker of
transmute but excludes as. As a result, Rudra is not able to
detect type confusion bugs effectively.

Comparison with Rust Type System. We also conduct the
experiment to elaborate if the existing Rust type system can ef-
fectively detect type confusion bugs in unsafe code regions.
We compare the positive cases of type confusion bugs de-
tected by TYPEPULSE and the Rust type system. Since Rust
considers unsafe keyword to be required for raw pointer
dereferences and unsafe APIs, removing unsafe will intro-
duce syntax errors. For the purpose of calculating the pre-
cision, we count these unremovable unsafe as positive bug
detections by Rust type system. If there are multiple unsafe
blocks in a single function, we count it as one. In other words,
the functions with unsafe but no type confusion bugs being

1 impl<'a, T> Iterator for TempFdArrayIterator<'a, T> {
2 type Item = &'a T;
3 fn next(&mut self) -> Option<Self::Item> {
4 // ...
5 let length = self.file_vec.len() / size_of::<T>();
6 let ts = unsafe {
7 slice::from_raw_parts(
8 self.file_vec.as_ptr() as *const T,
9 length)

10 };
11

12 pub fn build(&self) -> Result<Report> {
13 let mut hash_map = HashMap::new();
14 match self.profiler.write().as_mut() {
15 Err(err) => {...}
16 Ok(profiler) => {
17 profiler.data.try_iter()?
18 .for_each(|entry| { .. }

Listing 7: Misaligned bug found in the pprof package.

reported should be considered as false positive cases. We use
all vulnerable files including the 32 existing bugs (Table 1) as
the benchmark and find that both TYPEPULSE and the type
system can detect all the existing type confusion bugs; how-
ever, the type system produces 116 false positive cases while
TYPEPULSE only produces 3.
Summary. Our evaluation confirms that TYPEPULSE is the
most effective tool to detect type confusion bugs in Rust. Ex-
isting state-of-the-art Rust bug detection tools such as Clippy
and Rudra are not as effective, since they are not designed
for detecting type confusion bugs. Our experiment also ex-
plains that the current Rust type system is not sufficient to
check the unsafe type conversion, highlighting the necessity
of TYPEPULSE.

5.5 Impacts of Type Confusion Bugs
Memory errors might occur due to type confusion bugs, es-
pecially if the target type allows access to memory that the
source type cannot reach. The type confusion bugs discovered
by TYPEPULSE have different security implications. Among
them, 28 trigger panics, 24 cause uninitialized memory ac-
cess, 8 lead to out-of-bounds access, 7 construct illegal types,
and 4 can generate data race issues. Using case studies of the
pprof package [7], a popular Rust-based CPU profiler with
1.3k stars on Github and 159 crates.io dependents, we show
the impacts of bugs and how it helps diagnose Rust perfor-
mance bottlenecks. The bug was reported and confirmed by
the developers on Github. Besides, we also provide other case
studies and corresponding PoCs in Appendix A.
Misalignment Bugs. As shown in Listing 7, TYPEPULSE
detects a misalignment bug (line 8) in the next function
implemented on TempFdArrayIterator. When the unsafe
slice::from_raw_parts is called (line 11), it assumes the
caller meets safety contracts. The raw pointer must be aligned,

non-null, and point to length bytes of initialized values [11].
Violating these safety contracts causes a panic. One way
to invoke the next function is to build reports from a run-
ning profiler; it will iterate each entry to process the data
and write them into reports (line 12). The generic type T
in TempFdArrayIterator is decided by the item stored in
the profiler.data (line 17), which is UnresolvedFrames.
UnresolvedFrames is a representation of an event backtrace,
and it is a self-defined struct type with fields of u64, usize,
an array of u8. Since the file_vec is aligned to 1 byte, any
type that has a larger alignment than 1 byte can lead to the
misalignment bug and crash here.

Famous Rust-based applications like GreptimeDB [5] (4.1k
stars on GitHub) are affected by this bug. GreptimeDB, a time
series database storing logs, events, and CPU usage, crashes
when calling pprof (report::ReportBuilder::build) to
build reports. This panic can obstruct queries or data writes,
causing real-time network monitoring applications to miss
identifying high CPU usage, leading to network performance
decline. For example, given a GreptimeDB-based public net-
work server that provides the interface of event backtrace,
the attacker could initialize the data T with the type aligned
to 2 bytes, causing the network server panic and rendering
it unavailable to users. After reviewing related GitHub is-
sues, we traced the ReportBuilder::build code pattern
and searched on GitHub. Over 230 code files show similar
patterns and may be affected.

6 Discussion

Rust vs. C++ on Type Confusion Bugs. The distinction of
compiler features, type systems, and memory management in
Rust and C++ lead to different types of type confusion bugs
and new challenges in detecting them. First, while pointer-
type conversion is the primary cause of bugs in both lan-
guages, the inconsistent layout bug and the mismatched scope
bug mentioned in this paper do not occur in C++. This is
because the C++ compiler does not rearrange the memory lay-
out of composite types by default (thus no unstable_ty), and it
also does not impose strict requirements on the bit-pattern as
Rust does. From a different angle, type confusion bugs in C++,
which consistently occur when downcasting an object from
a parent class to a child class, does not exist in Rust. This is
because Rust lacks the object characteristics needed for such
issues. Rust introduces the concept of a trait object [45], com-
parable to C++ objects, to define shared behaviors. However,
since trait objects do not involve inheritance, they prevent
object-based type confusion bugs. Second, before resolving
generic types, extracting traits completely is more difficult in
Rust since Rust’s traits can be implicitly bounded while C++’s
concept must be explicit. Lastly, Rust’s implicit memory man-
agement brings convenience to developers by avoiding man-
ual management. However, it actually makes pointer alias

analysis harder. To verify whether the pointer is still valid, the
detector must ensure whether the memory is automatically
dropped or the ownership is transferred.

Complementing Rust type system. TYPEPULSE is neces-
sary since expanding the type system protection from Safe
Rust to include unsafe is insufficient, as shown in §5.4. The
type system’s safety assurances are not derived from execut-
ing type checks. Rather, Safe Rust prevents the presence of an
invalid type right from the beginning. Consider the example of
a misaligned pointer: Safe Rust prevents developers from con-
verting a pointer to one aligned with larger byte sizes (refer to
Listing 1). Due to this stringent rule, the compiler confidently
assumes that misaligned pointers are not present in Safe Rust.
Consequently, optimizations and code generation within the
compiler’s backend are carried out based on this assumption.
A pointer generated within unsafe is the only entity capable
of circumventing these rules. Even if the pointer from unsafe
is converted to a reference, the compiler will still treat this
reference as reliable. This flawed assumption can result in
undefined behavior. Therefore, a tool like TYPEPULSE that
aids in identifying an invalid type becomes essential for Rust
developers.

Mitigations of Type Confusion Bugs. We summarize com-
mon ways to fix the bugs detected by TYPEPULSE.
Type I: misalignment bugs. Misaligned references are pro-
hibited in safe code, but the safety of misaligned raw point-
ers depends on access methods. We propose two strate-
gies to prevent misalignment issues before dereferencing:
(1) use read_unaligned [8] or write_unaligned [14],
which handle misaligned pointers, or (2) create a new
aligned pointer. Most functions require aligned pointers;
read_unaligned creates an aligned duplicate by copying
data (copy_nonoverlapping) and casting to u8. Alterna-
tively, developers can manually create a new pointer by adding
an offset (ptr.add) to align the address.
Type II: inconsistent layout bugs. To avoid the inconsistent
layout bug, we need to ensure the type’s memory layout is
consistent and stable. If dst_ty is a primitive type with ini-
tialized memory in consecutive bytes, src_ty must not have
uninitialized bytes. Although most code avoids inconsistent
type conversion, it can occur during generic type conversion.
To prevent bugs in generic types, we can apply trait bounds
— list the types that can be legally converted and implement
the trait on them. This ensures callers use only the defined
types as parameters. A well-known trait implementing this
concept is bytemuck::Pod [49]. For struct-to-struct con-
versions, developers often wrongly assume stable memory
layout. To ensure stability, developers need to annotate types
for conversion with repr(C) or repr(transparent) [46].
Type III: mismatched scope bugs. Such bugs often oc-
cur in exposed APIs with generic type conversion. De-
velopers should limit types and use trait bounds to re-
strict conversion and validate values before converting. Li-

braries provide unsafe APIs like from_*_unchecked (e.g.,
str::from_utf8_unchecked [61]) for type conversion,
whose safety must be ensured by callers. Callers must validate
that source type values are appropriate for destination types.
For instance, str::from_utf8_unchecked requires UTF-
8 valid input, unlike the safe std::from_utf8 [60], which
checks this. Developers often use from_utf8_unchecked
over from_utf8 to avoid overhead, but safe functions should
be used in critical security scenarios.

7 Limitations and Future Work

As detailed in §5.2, TYPEPULSE has limitations in accurately
interpreting different implementations of developer-enforced
checks, leading to false positive cases. Some check patterns
are inherently implicit and difficult to formalize. For example,
calling size check functions but actually examining padding
bytes. Understanding this intricacy requires a deep contextual
insights. Additionally, assessing the value within the check
condition is particularly challenging when relying solely on
static tools. Without incorporating dynamic analysis, assuring
the accuracy of security checks becomes difficult, especially
in large software projects. In future work, we aim to integrate
symbolic execution in access checks, such as implementing
constraints to confirm that a pointer’s memory address can-
not be a multiple of the type size before TYPEPULSE flags
misalignment issues. Furthermore, with a path limitation of
1 for interprocedural analysis, TypePulse struggles to grasp
the context in extended call chains, which we aim to address
in future work.

8 Related Work

Research on type confusion bugs in C++/Javascript. In
other programming languages, there are a large number of
existing works focusing on type confusion bugs. For instance,
C++ supports implicit type conversion which can lead to
significant issues; thus, numerous scholars have developed
various methods to identify the type confusion bugs [18, 21,
26, 29]. Given that C++ includes diverse type casting abilities
and runtime polymorphism, detectors for such bugs must
integrate runtime analysis techniques while also managing
performance overhead. To enhance performance, TypeSan
[21] developed a framework capable of efficiently monitoring
memory allocation details. There are also several research
works focusing on type confusion bugs in Javascript [16, 41,
59]. Type-related issues in C++ are deemed more severe as
they directly contribute to memory safety problems, whereas
Javascript typically operates within constrained settings like
web browsers. Although Rust is engineered with improved
type-safety compared to C++ and Javascript, our research
shows that type-related errors can still occur in Rust.

Research on unsafe Rust. A substantial body of research ex-
plores how the use of unsafe can compromise the integrity of
Rust programs [19,27,34,39,44,47,68,69]. Xu et al. analyzed
hundreds of memory-safety issues, determining that safety
assurances can be violated by unsafe code [68], while other
works study how to protect the Rust program [27, 47]. Addi-
tionally, some scholars have investigated both memory-safety
and concurrency issues, assessing the effects of eliminating
unsafe code [44]. Rudra [15] and MirChecker [33] are specif-
ically designed to target functions that incorporate unsafe
code and detect memory-safety issues. Observations from our
research also suggest a significant correlation between type
confusion bugs in Rust and the use of unsafe code.

9 Conclusion

In this paper, we develop TYPEPULSE, the first static analysis
tool for detecting type confusion bugs in Rust. TYPEPULSE
focuses on detecting the three most common categories of
type confusion bugs— misalignment, inconsistent layout, and
mismatched scope. TYPEPULSE detected 71 previously un-
known bugs from the top 3,000 Rust packages. This number
surpasses the number of type confusion bugs documented in
the last five years in RustSec, which shows the effectiveness
of TYPEPULSE. The identified bugs were reported to the de-
velopers, who have confirmed 32 of these issues. We also
compare TYPEPULSE with existing Rust bug detection tools,
and perform case studies to demonstrate the security implica-
tions of the identified bugs. TYPEPULSE will be open-sourced
to facilitate future research.

Acknowledgment

We thank our shepherd and the reviewers for their insightful
feedback. This work is partially supported by ONR grant
N00014-23-1-2122 and the IDIA P3 Faculty Fellowship from
George Mason University.

Open Science

To promote transparency and reproducibility in our research,
the data artifacts of this paper will be made publicly available,
including source code, detected bugs, and related github issues
we reported. We disclose only those issues that have been
acknowledged and resolved by developers. Issues that remain
unresolved at the time of writing are not included in detail.
All data is available on Zenodo: https://zenodo.org/r
ecords/14750104.

Ethics Considerations

We take ethics seriously in this project. All Rust repositories
we tested in the paper are publicly accessible on Github. Dur-

ing evaluations of our work, TYPEPULSE identified several
previously unknown type confusion vulnerabilities in widely
used software. In each case, we followed a responsible dis-
closure policy, and reported our discovered vulnerabilities to
the developers. We also submitted our findings to the CVE
program and the RustSec Advisory Database. We did not dis-
close those issues to anyone else. All the examples mentioned
in the paper are the issues that have been acknowledged and
fixed. The RustSec IDs issued are: RUSTSEC-2023-0046,
RUSTSEC-2023-0047, RUSTSEC-2024-0408, RUSTSEC-
2024-0424, RUSTSEC-2024-0426, RUSTSEC-2024-0431;
The CVE ID is currently in the reserved status at the time
of writing and will be released later.

References

[1] Clippy lints - cast pointer alignment.
https://rust-lang.github.io/rust-clippy/
master/index.html#/cast_ptr_alignment.

[2] Clippy lints - unsound collection transmute. https:
//rust-lang.github.io/rust-clippy/master/i
ndex.html#/unsound_collection_transmute.

[3] Foreign function interface - the rustonomicon. https:
//doc.rust-lang.org/nomicon/ffi.html.

[4] Generic data types - the rust programming lan-
guage. https://doc.rust-lang.org/book/c
h10-01-syntax.html.

[5] Greptime. https://greptime.com/.

[6] The mir (mid-level ir) - rust compiler development
guide. https://rustc-dev-guide.rust-lang.or
g/mir/index.html.

[7] pprof. https://crates.io/crates/pprof.

[8] read_unaligned in std::ptr - rust. https:
//doc.rust-lang.org/nightly/std/ptr/fn.r
ead_unaligned.html.

[9] rust-lang/rust-clippy: A bunch of lints to catch com-
mon mistakes and improve your rust code. book:
https://doc.rust-lang.org/clippy/. https://github.c
om/rust-lang/rust-clippy/tree/master.

[10] Rustsec: The rust security advisory database. https:
//rustsec.org/advisories/.

[11] std::slice::from_raw_parts. https://doc.rust-lan
g.org/std/slice/fn.from_raw_parts.html.

[12] Trait and lifetime bounds - the rust reference.
https://doc.rust-lang.org/reference/trai
t-bounds.html.

https://zenodo.org/records/14750104
https://zenodo.org/records/14750104
https://rust-lang.github.io/rust-clippy/master/index.html#/cast_ptr_alignment
https://rust-lang.github.io/rust-clippy/master/index.html#/cast_ptr_alignment
https://rust-lang.github.io/rust-clippy/master/index.html#/cast_ptr_alignment
https://rust-lang.github.io/rust-clippy/master/index.html#/unsound_collection_transmute
https://rust-lang.github.io/rust-clippy/master/index.html#/unsound_collection_transmute
https://rust-lang.github.io/rust-clippy/master/index.html#/unsound_collection_transmute
https://doc.rust-lang.org/nomicon/ffi.html
https://doc.rust-lang.org/nomicon/ffi.html
https://doc.rust-lang.org/book/ch10-01-syntax.html
https://doc.rust-lang.org/book/ch10-01-syntax.html
https://greptime.com/
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://crates.io/crates/pprof
https://doc.rust-lang.org/nightly/std/ptr/fn.read_unaligned.html
https://doc.rust-lang.org/nightly/std/ptr/fn.read_unaligned.html
https://doc.rust-lang.org/nightly/std/ptr/fn.read_unaligned.html
https://github.com/rust-lang/rust-clippy/tree/master
https://github.com/rust-lang/rust-clippy/tree/master
https://rustsec.org/advisories/
https://rustsec.org/advisories/
https://doc.rust-lang.org/std/slice/fn.from_raw_parts.html
https://doc.rust-lang.org/std/slice/fn.from_raw_parts.html
https://doc.rust-lang.org/reference/trait-bounds.html
https://doc.rust-lang.org/reference/trait-bounds.html
https://doc.rust-lang.org/reference/trait-bounds.html

[13] Typeid in std::any - rust. https://doc.rust-lang.
org/stable/std/any/struct.TypeId.html.

[14] write_unaligned in std::ptr - rust. https:
//doc.rust-lang.org/stable/std/ptr/fn.wr
ite_unaligned.html.

[15] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon
Lim, and Taesoo Kim. Rudra: Finding memory safety
bugs in rust at the ecosystem scale. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, page 84–99, New York, NY, USA,
2021. Association for Computing Machinery.

[16] Fraser Brown, Shravan Narayan, Riad S. Wahby, Daw-
son Engler, Ranjit Jhala, and Deian Stefan. Finding
and preventing bugs in javascript bindings. In 2017
IEEE Symposium on Security and Privacy (SP), pages
559–578, 2017.

[17] Mohan Cui, Chengjun Chen, Hui Xu, and Yangfan Zhou.
Safedrop: Detecting memory deallocation bugs of rust
programs via static data-flow analysis. ACM Trans.
Softw. Eng. Methodol., 32(4), may 2023.

[18] Gregory J Duck and Roland HC Yap. Effectivesan: type
and memory error detection using dynamically typed
c/c++. In Proceedings of the 39th ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, pages 181–195, 2018.

[19] Ana Nora Evans, Bradford Campbell, and Mary Lou
Soffa. Is rust used safely by software developers? 2020
IEEE/ACM 42nd International Conference on Software
Engineering (ICSE), pages 246–257, 2020.

[20] Xiaokang Fan, Zeyu Xia, Sifan Long, Chun Huang, and
Canqun Yang. Accelerating type confusion detection
with pointer analysis. IAENG International Journal of
Computer Science, 20:664–671, 2020.

[21] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias
Payer, Cristiano Giuffrida, Herbert Bos, and Erik
Van Der Kouwe. Typesan: Practical type confusion
detection. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
pages 517–528, 2016.

[22] Valerii Hiora. lmdb-rs: Rust bindings for lmdb. https:
//crates.io/crates/lmdb-rs.

[23] The White House. Future software should be memory
safe. https://www.whitehouse.gov/oncd/brie
fing-room/2024/02/26/press-release-technic
al-report/.

[24] The HuggingFace. The ai community building the fu-
ture. https://huggingface.co/.

[25] The HuggingFace. Candle - minimalist ml framework
for rust. https://github.com/huggingface/can
dle.

[26] Yuseok Jeon, Priyam Biswas, Scott Carr, Byoungyoung
Lee, and Mathias Payer. Hextype: Efficient detection
of type confusion errors for c++. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2373–2387, 2017.

[27] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per
Larsen, Adrian Dabrowski, David Gens, Yeoul Na, Stijn
Volckaert, and Michael Franz. Pkru-safe: Automatically
locking down the heap between safe and unsafe lan-
guages. In Proceedings of the Seventeenth European
Conference on Computer Systems, pages 132–148, 2022.

[28] The Rust Programming Language. What is own-
ership? https://doc.rust-lang.org/book/c
h04-01-what-is-ownership.html.

[29] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and
Wenke Lee. Type casting verification: Stopping an
emerging attack vector. In 24th USENIX Security Sym-
posium (USENIX Security 15), pages 81–96, 2015.

[30] Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu. Path-
sensitive and alias-aware typestate analysis for detecting
os bugs. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’22, page
859–872, New York, NY, USA, 2022. Association for
Computing Machinery.

[31] Wei Li, Dongjie He, Yujiang Gui, Wenguang Chen, and
Jingling Xue. A context-sensitive pointer analysis frame-
work for rust and its application to call graph construc-
tion. In Proceedings of the 33rd ACM SIGPLAN Interna-
tional Conference on Compiler Construction, CC 2024,
page 60–72, New York, NY, USA, 2024. Association
for Computing Machinery.

[32] Xuejian Li and Zhengguang Zhu. Software defect detec-
tion based on feature fusion and alias analysis. In 2023
IEEE International Test Conference in Asia (ITC-Asia),
pages 1–6, 2023.

[33] Zhuohua Li, Jincheng Wang, Mingshen Sun, and
John C.S. Lui. Mirchecker: Detecting bugs in rust pro-
grams via static analysis. CCS ’21, page 2183–2196,
New York, NY, USA, 2021. Association for Computing
Machinery.

[34] Samuel Mergendahl, Nathan Burow, and Hamed
Okhravi. Cross-language attacks. In NDSS, 2022.

[35] Mozilla. Mozilla firefox. https://www.mozilla.or
g/en-US/firefox/new/.

https://doc.rust-lang.org/stable/std/any/struct.TypeId.html
https://doc.rust-lang.org/stable/std/any/struct.TypeId.html
https://doc.rust-lang.org/stable/std/ptr/fn.write_unaligned.html
https://doc.rust-lang.org/stable/std/ptr/fn.write_unaligned.html
https://doc.rust-lang.org/stable/std/ptr/fn.write_unaligned.html
https://crates.io/crates/lmdb-rs
https://crates.io/crates/lmdb-rs
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://huggingface.co/
https://github.com/huggingface/candle
https://github.com/huggingface/candle
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://www.mozilla.org/en-US/firefox/new/
https://www.mozilla.org/en-US/firefox/new/

[36] NIST. Nvd - cve-2023-3079. https://nvd.nist.g
ov/vuln/detail/CVE-2023-3079.

[37] NIST. Nvd - cve-2023-4762. https://nvd.nist.g
ov/vuln/detail/CVE-2023-4762.

[38] NIST. Nvd - cve-2024-1939. https://nvd.nist.g
ov/vuln/detail/CVE-2024-1939.

[39] Michalis Papaevripides and Elias Athanasopoulos. Ex-
ploiting mixed binaries. ACM Transactions on Privacy
and Security (TOPS), 24(2):1–29, 2021.

[40] Plain. Trait plain - doc.rs. https://docs.rs/plai
n/latest/plain/trait.Plain.html.

[41] Michael Pradel, Parker Schuh, and Koushik Sen.
Typedevil: Dynamic type inconsistency analysis for
javascript. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 1, pages
314–324. IEEE, 2015.

[42] The Rust Project. Rust Programming Language. http
s://www.rust-lang.org/.

[43] The Rust Project. Type conversions - the rustonomi-
con. https://doc.rust-lang.org/nomicon/conv
ersions.html.

[44] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and
Yiying Zhang. Replication package for article: Under-
standing memory and thread safety practices and issues
in real-world rust programs. Artifact Digital Object
Group, 2020.

[45] The Rust Reference. Trait objects. https:
//doc.rust-lang.org/reference/types/trai
t-object.html.

[46] The Rust Reference. Type layout. https://doc.ru
st-lang.org/reference/type-layout.html.

[47] Elijah Rivera, Samuel Mergendahl, Howard Shrobe,
Hamed Okhravi, and Nathan Burow. Keeping safe rust
safe with galeed. In Proceedings of the 37th Annual
Computer Security Applications Conference, pages 824–
836, 2021.

[48] Rust. Cargo targets - the cargo book.
https://doc.rust-lang.org/cargo/refere
nce/cargo-targets.html.

[49] Rust. Pod in bytemuck. https://docs.rs/bytemu
ck/latest/bytemuck/trait.Pod.html.

[50] Rust. Traits. https://doc.rust-lang.org/refe
rence/items/traits.html.

[51] rustc_middle. rustc_middle::mir::local.
https://doc.rust-lang.org/nightly/nightl
y-rustc/rustc_middle/mir/struct.Local.html.

[52] rustc_middle. rustc_middle::mir::statement. https:
//doc.rust-lang.org/nightly/nightly-rustc
/rustc_middle/mir/struct.Statement.html.

[53] rustc_middle. rustc_middle::mir::terminator::terminator.
https://doc.rust-lang.org/nightly/nightl

y-rustc/rustc_middle/mir/terminator/struct.
Terminator.html.

[54] RUSTSEC. Rustsec-2019-0035. https://rustsec.
org/advisories/RUSTSEC-2019-0035.html.

[55] RUSTSEC. Rustsec-2020-0029. https://rustsec.
org/advisories/RUSTSEC-2020-0029.html.

[56] RUSTSEC. Rustsec-2022-0074. https://rustsec.
org/advisories/RUSTSEC-2022-0074.html.

[57] RUSTSEC. Rustsec-2024-0016. https://rustsec.
org/advisories/RUSTSEC-2024-0016.html.

[58] RUSTSEC. Rustsec-2024-0338. https://rustsec.
org/advisories/RUSTSEC-2024-0338.html.

[59] Lili Sun, Chenggang Wu, Zhe Wang, Yan Kang, and
Bowen Tang. Kop-fuzzer: A key-operation-based fuzzer
for type confusion bugs in javascript engines. In 2022
IEEE 46th Annual Computers, Software, and Applica-
tions Conference (COMPSAC), pages 757–766, 2022.

[60] The Rust Team. from_utf8 in std::str - Rust.
https://doc.rust-lang.org/stable/std/str/f
n.from_utf8.html.

[61] The Rust Team. Function from_utf8_unchecked in
std::str - Rust. https://doc.rust-lang.org/stab
le/std/str/fn.from_utf8_unchecked.html.

[62] The Rust Team. Meet safe and unsafe.
https://doc.rust-lang.org/nomicon/meet
-safe-and-unsafe.html#meet-safe-and-unsafe.

[63] The Rust Team. unsafe - rust. https://doc.rust-l
ang.org/std/keyword.unsafe.html.

[64] The Rust Reference. Behavior considered unde-
fined. https://doc.rust-lang.org/reference/
behavior-considered-undefined.html.

[65] Linus Torvalds and thousands of contributors. The linux
kernel. https://www.kernel.org/.

[66] Wikipedia. Breadth-first search. https://en.wikip
edia.org/wiki/Breadth-first_search.

https://nvd.nist.gov/vuln/detail/CVE-2023-3079
https://nvd.nist.gov/vuln/detail/CVE-2023-3079
https://nvd.nist.gov/vuln/detail/CVE-2023-4762
https://nvd.nist.gov/vuln/detail/CVE-2023-4762
https://nvd.nist.gov/vuln/detail/CVE-2024-1939
https://nvd.nist.gov/vuln/detail/CVE-2024-1939
https://docs.rs/plain/latest/plain/trait.Plain.html
https://docs.rs/plain/latest/plain/trait.Plain.html
https://www.rust-lang.org/
https://www.rust-lang.org/
https://doc.rust-lang.org/nomicon/conversions.html
https://doc.rust-lang.org/nomicon/conversions.html
https://doc.rust-lang.org/reference/types/trait-object.html
https://doc.rust-lang.org/reference/types/trait-object.html
https://doc.rust-lang.org/reference/types/trait-object.html
https://doc.rust-lang.org/reference/type-layout.html
https://doc.rust-lang.org/reference/type-layout.html
https://doc.rust-lang.org/cargo/reference/cargo-targets.html
https://doc.rust-lang.org/cargo/reference/cargo-targets.html
https://doc.rust-lang.org/cargo/reference/cargo-targets.html
https://docs.rs/bytemuck/latest/bytemuck/trait.Pod.html
https://docs.rs/bytemuck/latest/bytemuck/trait.Pod.html
https://doc.rust-lang.org/reference/items/traits.html
https://doc.rust-lang.org/reference/items/traits.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Local.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Local.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Local.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Statement.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Statement.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Statement.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/terminator/struct.Terminator.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/terminator/struct.Terminator.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/terminator/struct.Terminator.html
https://rustsec.org/advisories/RUSTSEC-2019-0035.html
https://rustsec.org/advisories/RUSTSEC-2019-0035.html
https://rustsec.org/advisories/RUSTSEC-2020-0029.html
https://rustsec.org/advisories/RUSTSEC-2020-0029.html
https://rustsec.org/advisories/RUSTSEC-2022-0074.html
https://rustsec.org/advisories/RUSTSEC-2022-0074.html
https://rustsec.org/advisories/RUSTSEC-2024-0016.html
https://rustsec.org/advisories/RUSTSEC-2024-0016.html
https://rustsec.org/advisories/RUSTSEC-2024-0338.html
https://rustsec.org/advisories/RUSTSEC-2024-0338.html
https://doc.rust-lang.org/stable/std/str/fn.from_utf8.html
https://doc.rust-lang.org/stable/std/str/fn.from_utf8.html
https://doc.rust-lang.org/stable/std/str/fn.from_utf8.html
https://doc.rust-lang.org/stable/std/str/fn.from_utf8_unchecked.html
https://doc.rust-lang.org/stable/std/str/fn.from_utf8_unchecked.html
https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html#meet-safe-and-unsafe
https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html#meet-safe-and-unsafe
https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html#meet-safe-and-unsafe
https://doc.rust-lang.org/std/keyword.unsafe.html
https://doc.rust-lang.org/std/keyword.unsafe.html
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
https://www.kernel.org/
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search

1 // lmdb-rs/src/traits.rs
2 impl FromMdbValue for $t {
3 fn from_mdb_value(value: &MdbValue) -> $t {
4 unsafe { *transmute(value.get_ref()) }
5 }
6 }
7 // lmdb-rs/src/core.rs
8 #[inline]
9 pub fn new_from_sized<T>(data: &'a T) -> MdbValue<'a> {

10 unsafe { MdbValue::new(transmute(data), size_of::<T>())}
11 }

Listing 8: The vulnerabilities in lmdb-rs package [22].

1 fn main() {
2 let a: i32 = 3;
3 let mdbval = MdbValue::new_from_sized(&a);
4 let res = i64::from_mdb_value(&mdbval);
5 println!("{:?}", res);
6 }

Listing 9: Exploit that trigger bug type I.

[67] Wikipedia. Lint (software). https://en.wikipedia
.org/wiki/Lint_(software).

[68] Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou,
and Michael R. Lyu. Memory-safety challenge consid-
ered solved? an in-depth study with all rust cves. ACM
Trans. Softw. Eng. Methodol., 31:3:1–3:25, 2020.

[69] Yuchen Zhang, Yunhang Zhang, Georgios Portokalidis,
and Jun Xu. Towards understanding the runtime perfor-
mance of rust. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engi-
neering, pages 1–6, 2022.

A Bugs Due to Generic Type Conversion

We demonstrate these three types of type conversion bugs
using an example. The bugs are discovered from lmdb-rs
package [22], which is a package providing API bindings
to the LMDB (Lightning Memory-Mapped Database) li-
brary. In Listing 8, we showcase an implementation of
from_mdb_value function defined in the FromMdbvalue
trait. The primary functionality of this code snippet is to con-
vert a reference of MdbValue into another type $t. The type
conversion is performed using transmute at line 4, which is
included in unsafe. The function new_from_size (line 9) is
used to create a new object MdbValue from the reference of
generic type T. Therefore, the users of the package can create
input for from_mdb_value with new_from_size function.
All type conversion bugs occur in from_mdb_value function
because of the problematic type conversion.

1 #[repr(align(2))]
2 #[derive(Copy, Clone, Debug)]
3 struct Padding { a: u8, b: u16, c: u8 }
4 fn main() {
5 let la = Padding { a: 10, b: 11, c: 12 };
6 let mdbval = MdbValue::new_from_sized(&la);
7 let res = i32::from_mdb_value(&mdbval);
8 println!("{:?}", res);
9 }

Listing 10: Exploit that trigger bug type II.

Type I: Misalignment bug. The first type of bug occurs
when reinterpreting the type of the source object in memory
to another type with a larger alignment. In the exploit code
of Listing 9, we define and initialize an i32 variable a, and
convert it into i64 using from_mdb_value defined in List-
ing 8, which would cause the misalignment issue. The data is
aligned only if it is stored at an address that is a multiple of the
type’s alignment bytes. Most primitive types (e.g., u8 and u32
in this case) are aligned to their size. For example, a 32-bit
integer (i32) should be stored at the memory address that is
a multiple of 4. However, the starting address of i32 may
not be a multiple of 4, hence accessing a misaligned object
can results in undefined behavior. In this case, a misaligned
pointer dereference (Line 5 in Listing 8) would cause runtime
panic. Generally, such undefined behaviors in architectures
that do not support unaligned access (e.g., before ARMv5)
would cause the program to crash.
Type II: Inconsistent layout bug. In Listing 10, the second
type of bug occurs when reinterpreting the uninitialized area
of the source object in memory. We define a struct Padding
(line 3) and instantiate an object la (line 5), and then convert
it into an i32 primitive object res. It looks like the source
and target objects share the same size (u8+u16+u8=i32), but
there will be padding bits among each member variable in the
struct for alignment. In this case, member b’s size is 16 bits
(u16); thus, there will be 8-bit padding for both a and c. These
paddings are uninitialized areas in memory, which would trig-
ger the undefined behavior when transmute() accesses them.
Besides, a further dangerous issue is the unknown padding
layout in Rust. Different from the struct padding rule in C (i.e.,
repr(c)), which usually adds padding bits at the end of the
struct, Rust has no guarantees of data layout made by the de-
fault representation (repr(rust)). That means the compiler
can do whatever it wants to reorder fields based on access
patterns. A possible rule in practice is to organize by field
size to minimize padding. Therefore, the location of padding
is random and may cause data exposure.
Type III: Mismatched scope bug. The third bug type hap-
pens when the value of the source object exceeds the bit-
pattern range of the target type. The bit pattern refers to the
raw binary representation of data in memory. In the case of
Listing 11, we convert an i32 variable into the bool type.

https://en.wikipedia.org/wiki/Lint_(software)
https://en.wikipedia.org/wiki/Lint_(software)

1 fn main() {
2 let a: i32 = 3;
3 let mdbval = MdbValue::new_from_sized(&a);
4 let res = bool::from_mdb_value(&mdbval);
5 println!("{:?}", res); // illegal boolean type
6

7 let arr = [1u8; 2];
8 println!("{:?}", arr[res as usize]); // OOB index
9 }

Listing 11: Exploit that trigger bug type III.

However, the i32 has 232 bit-patterns while the boolean type
has only 2 bit-patterns (false/true). The value false has
the bit pattern 0x00 and the value true has the bit pattern
0x01. Hence, an undefined behavior would occur if an bool
object represents any other bit pattern. Moreover, even the con-
version between same-sized types may suffer such an issue.
For example, the string type in Rust only supports UTF-8
encoding that includes (28−2) unit characters. When we con-
vert an u8 (28 bit-patterns) into string type, the undefined
behavior can also be triggered if the value of source object is
254 or 255. The third bug can also be exploited to trigger the
Out-Of-Bound memory access (OOB). Originally, the com-
piler always inserts the bound check to protect us from the
OOB vulnerability. When the compiler assumes that type has
legal value and removes the unnecessary bound check, OOB
can be triggered (see line 8).

B Root Cause of Type Confusion Bugs

Based on Table 3, we summarize the root cause of type confu-
sion bugs we have found in two phases: First, we discuss how
developers make mistakes based on type conversion patterns.
Second, we study the error-prone methods of 1 Conversion
and 2 Access, specifically on usages of unsafe functions.
Con→ Con. TypePulse identifies more type confusion bugs
in the concrete type conversion from the top 3,000 packages.
In concrete type conversion, we highlight the causes of mis-
alignment bugs since its number (21) is much more than the
others (10 on inconsistent layout bugs and 6 on mismatched
scope bugs). We consider the root cause to be the lack of
alignment awareness. We can also find that developers sup-
press the warnings of alignment from Clippy [9]. While some
developers consider the impacts of misalignment are minor
since most operating systems nowadays can tolerate the un-
aligned memory access, we have discovered an issue that can
cause to crash (see §5.5).
Gen → Con. In the type conversion Gen→ Con, we have
discovered more inconsistent layout bugs (15) than the others
(2 on misalignment bugs and 4 on mismatched scope bugs).
Based on our observation, the developers usually consider
the input types that initialize the generic type have a stable

memory layout and consequently initialized. For example,
the function as_byte_slice is always used to convert the
generic type into the slice of u8, leading to uninitialized mem-
ory exposure.
Con→Gen. For bugs related to type conversion Con→Gen,
we find that developers have tried to limit the input types
by adding the size check, ensuring the memory layout to
be stable. However, the size check is not sufficient to check
the alignment and the validity of types. Nevertheless, we still
consider that the developers of the top 3,000 packages provide
more protection in this type conversion, leading to the least
number (14) of bugs compared to the others (37 in Con→
Con and 21 in Gen→ Con).
1 Conversion. For the methods used for type conversion,

we find that developers make more mistakes with as than
transmute. We assume that developers tend to use as more
commonly since transmute is a unsafe function itself while
as is not, but they are not aware that as can also create prob-
lematic types, even if it is a safe function. Since we find
fewer numbers of mismatched scope bugs than the other two
types of bugs, we consider that the maintainers of the top
3,000 packages are more experienced in avoiding this kind of
bug. To support our conjecture, we randomly pick 10 more
packages that are not ranked in the top 3,000 and find 6 more
mismatched scope bugs. The bug discovered in lmdb-rs pack-
age is one of the examples (see Appendix A).
2 Access. We also study the unsafe usages of problematic
types which could trigger the bugs, and separate them into
three categories. First, type conversion can cause bugs when
developers try to build a slice or vector with unsafe functions
such as from_raw_parts. Second, dest is a raw pointer type,
and the developers try to dereference the raw pointer. The
purpose of raw pointer dereference can be separated into two
kinds: a) overwrite the value stored at the memory address
and b) dereference the raw pointer to rebuild the reference.
Third, developers try to use transmute between references,
which is dangerous and might break the safety guarantee of
reference.

	Introduction
	Background
	Rust Basics
	Type Conversion in Rust

	Overview
	Motivating Examples
	Challenges and Insights
	Detection Scope

	TypePulse
	Property Graph Constructor
	Type Conversion Analysis
	Pointer Alias Analysis

	Bug Detector
	Type Conversion Check
	Access Check
	Developer-Enforced Check Analysis
	Integration of Interprocedural Analysis

	Implementation

	Evaluation
	Bug Detection Results
	False Positive Analysis
	Impacts of Interprocedural Analysis
	Comparison with Existing Tools
	Impacts of Type Confusion Bugs

	Discussion
	Limitations and Future Work
	Related Work
	Conclusion
	Bugs Due to Generic Type Conversion
	Root Cause of Type Confusion Bugs

