
What IF Is Not Enough?
Fixing Null Pointer Dereference With Contextual Check

Yunlong Xing

George Mason University

Shu Wang

George Mason University

Shiyu Sun

George Mason University

Xu He

George Mason University

Kun Sun

George Mason University

Qi Li

Tsinghua University

Abstract
Null pointer dereference (NPD) errors pose the risk of unex-
pected behavior and system instability, potentially leading to
abrupt program termination due to exceptions or segmenta-
tion faults. When generating NPD fixes, all existing solutions
are confined to the function level fixes and ignore the valuable
intraprocedural and interprocedural contextual information,
potentially resulting in incorrect patches. In this paper, we
introduce CONCH, a novel approach that addresses the chal-
lenges of generating correct fixes for NPD issues by incorpo-
rating contextual checks. Our method first constructs an NPD
context graph to maintain the semantics related to patch gen-
eration. Then we summarize distinct fixing position selection
policies based on the distribution of the error positions, ensur-
ing the resolution of bugs without introducing duplicate code.
Next, the intraprocedural state retrogression builds the if con-
dition, retrogresses the local resources, and constructs return
statements as an initial patch. Finally, we conduct interproce-
dural state propagation to assess the correctness of the initial
patch in the entire call chain. We evaluate the effectiveness
of CONCH over two real-world datasets. The experimental
results demonstrate that CONCH outperforms the SOTA meth-
ods and yields over 85% accurate patches.

1 Introduction

Null Pointer Dereference (NPD) occurs when a program at-
tempts to access memory at a null pointer, and dereferencing a
null pointer always causes the program to collapse. If an NPD
occurs in a crucial system component, e.g., a kernel module
or device driver, it can lead to a system-wide crash [11, 39].
Additionally, NPDs can be exploited by attackers to carry out
malicious actions, such as executing unauthorized code or
launching a denial-of-service attack [3, 4]. Therefore, NPDs
are among the top prevailing security issues in the production
environment [8, 9].

Several efforts have been made to patch NPD vulnerabil-
ities [6, 12, 14, 15, 46–48]. Most of them follow the conven-
tional generate-and-validate repair steps. They first traverse

the search space using classic search algorithms like genetic
programming or random search and then validate the gen-
erated patches using test cases. As the SOTA solution for
fixing NPDs, VFix [48] localizes suspicious statements by
using static value-flow analysis and dynamic test case driven
triggering. Then VFix reduces the search space using the pre-
defined fixing patterns, i.e., reallocating a new memory space
or adding an if check, to improve the efficiency of the patch
process and increase the chances of finding correct patches.

However, all existing solutions are confined to the function
level fixes and ignore valuable intraprocedural and interpro-
cedural contextual information when generating NPD fixes.
First, the overlook of intraprocedural contextual information
may cause overdue occupation of system resources such as
memory and locks, denying access to those critical system
resources as intended. Second, there is no interprocedural
analysis for fixing NPD bugs, disregarding global variable
resetting, function argument resetting, and patch validation in
the call chain. For instance, it is crucial to reset some global
variables and function arguments; otherwise, the program’s
state could be misidentified [25]. It remains a challenge to
correctly fix NPD errors with contextual information.

In this paper, we propose an NPD contextual check mecha-
nism named CONCH for fixing NPD errors with contextual
information. By assessing the specific context in which the
errors occur, CONCH can effectively generate the NPD fixes
for scenarios that insert if checks, which are the most popular
cases in real-world vulnerability fixing [44]. To construct ac-
curate NPD patches that work within the function and among
the entire call chain, we address three challenges.

The first challenge lies in selecting the appropriate repair
position that ensures the correct and efficient repair without re-
dundant patching. VFix [48] uses path congestion to select the
repair position; however, its vulnerability path selection relies
on test case selection and the dynamic triggering of test cases.
We propose a vulnerability fix tailored graph named NPD
Context Graph, which only maintains the semantics related to
patch generation. In the NPD context graph, we identify the
null and error positions and their corresponding paths. Then

we summarize four fixing position selection policies based on
the distribution of the null and error positions, ensuring the
resolution of bugs without duplicate fixes.

The second challenge involves constructing an initial patch
via intraprocedural state retrogression to guarantee the cor-
rectness of the generated patch within the local function. This
includes building the if condition, retrogressing the local re-
sources, and constructing the return statement. When gener-
ating the if condition, we focus on the callee function at the
null position. We analyze the implementation of the callee
function to determine the exception value it returns when
it encounters a failure. This exception value is crucial to
constructing the condition for the if check in the current er-
roneous function. To retrogress the local resources, we have
to deal with the diverse naming conventions of memory al-
location/deallocation and locking/unlocking functions. To
the best of our knowledge, there is no existing research that
specifically addresses freeing the allocated memory and re-
leasing the occupied lock during NPD fixing. To retrogress
the local resources, we initiate by extracting keywords such as
“alloc” and “lock” from the kernel and general libraries. This
extraction helps create a dictionary of paired functions. Subse-
quently, we identify any missing pairs for allocated memory
and occupied locks within the buggy function. When con-
structing a correct return statement, we consider the return
type and other return statements in the current function. If
the error occurs within a loop, we ensure the function can
continue or break the loop without exiting the entire program.

The third challenge entails conducting the interprocedural
state propagation, including resetting the global variables/-
function arguments and assessing the patch correctness in the
call chain. To reset the global variables and function argu-
ments, we first identify which variables should be reset. The
search scope is from the function entry to the error position,
and we exclude the local variables. Then we determine the
value to be reset by referring to the existing error-handling
statement within the current function and conducting data
flow analysis to infer the condition in the caller that repre-
sents a failure state. To assess the NPD fixing handled in the
entire call chain, we analyze the return type of the callee func-
tion. If the return type is void, it returns no value to its caller
function. In such a case, if the caller function executes nor-
mally after the buggy function returns when detecting a null
pointer, we recursively analyze the call chain from the buggy
function to the function that handles the error and update the
intermediate functions according to the error-handling seman-
tics. If the return type is not void, it has a return value to its
caller function. Then, we check if the caller handles the return
value correctly. If not, we update the caller.

We implement a prototype of CONCH and evaluate its
contextual correctness for NPD fixes using two real-world
datasets. The first dataset includes 80 NPD vulnerabilities
from MITRE [30] and CONCH can generate 68, with an accu-
racy of 85%, semantic equivalent patches as submitted by the

developer, outperforming an accuracy of 26.25% compared to
the SOTA approach. The second dataset comes from a well-
known benchmark suite [42], containing 18 NPD programs.
CONCH can generate 16 correct patches, while the SOTA
approach can only generate 12 correct patches.

In summary, we make the following contributions:

• We propose to fix NPD errors with contextual checks,
ensuring a more effective and complete vulnerability
control throughout the entire call chain.

• We are the first to address local resource retrogression
(including freeing the allocated memory and releasing
the occupied lock) and reset global variable and function
argument in NPD fixing.

• We implement a prototype of CONCH and conduct ex-
periments to evaluate its effectiveness and accuracy. The
experimental results show that CONCH outperforms the
SOTA approach.

We will open-source our tool and release the tested vulner-
ability code and benchmark.

2 Background

2.1 Separation Logic
Separation Logic (SL) [38] is grounded in a set of inference
rules and techniques that enable effective reasoning about
memory allocation, deallocation, and relationships among dif-
ferent memory segments in program analysis. It provides a
precise framework for examining the ownership and sharing
of heap-allocated data structures and resources. Derived from
Hoare Logic [43], SL inherits the fundamental notions of pre-
and post-conditions, which define the required conditions be-
fore and after program execution, respectively. These concepts
are unified in Hoare triples of the form {P}C{Q}, where P
and Q represent pre- and post-conditions and C denotes an op-
eration. The logic encompasses a collection of inference rules
to facilitate reasoning about program statements, including
assignments, conditionals, and loops. Additionally, SL intro-
duces Frame Rule [38] for modular reasoning about program
components. By incorporating these elements, SL is able to
verify program correctness, detect bugs related to memory
access, and reason about heap-related behaviors.

2.2 Incorrectness Separation Logic
Based on separation logic, several approaches were proposed
to prove the absence of memory-related bugs [1,2,13], but not
reasoning for bug presence. In 2020, Incorrectness Separation
Logic (ISL) [37] is proposed to extend SL and catch heap-
related errors. Due to the ISL principle, there are no false
positives in error detection [37]. The key contribution of ISL is
to provide inference rules to define memory safety violations

when accessing deallocated locations. Equation 1 shows the
extended rules on NPD issues.

LOADERR: {y ↛ } x := [y] {err: y ↛ }
LOADNULL: {y = null} x := [y] {err: y = null}
STOREERR: {x ↛ } [x] := y {err: x ↛ }
STORENULL: {x = null} [x] := y {err: x = null}

(1)

The LOADERR rule specifies that an error occurs when
attempting to dereference y that has already been deallo-
cated. Similarly, the LOADNULL rule states that an error
arises when attempting to dereference a null pointer y. The
STOREERR rule indicates that an error occurs when trying to
assign a value to x that has already been deallocated. Lastly,
the STORENULL rule states that an error arises when attempt-
ing to assign a value to a null pointer x.

When reasoning on heap-related data structures, an NPD
error is identified if a statement satisfies any of the ISL rules in
Equation 1. These rules serve as the foundation for detecting
NPD vulnerabilities in this paper and we select fault localiza-
tion using ISL as our initial step to identify the null and error
positions in an NPD program. Since SL and ISL mutually
reinforce each other in detecting NPD vulnerabilities, we use
SL to encompass both SL and ISL collectively.

3 Motivation Examples

Our work is motivated by the NPD fix cases where existing
solutions yield incorrect security checks due to the neglect of
intraprocedural/interprocedural context, leading to unreleased
locks, unreset variables, or even new errors in the call chain.
We illustrate three examples to demonstrate the root cause of
the inappropriate NPD fixes and show how CONCH can over-
come the existing limitations in intraprocedural state retro-
gression and interprocedural state propagation. For simplicity,
we focus on error-related statements and their corresponding
fixes, normalizing the function names and parameters without
changing their execution logic.

3.1 Intraprocedural State Retrogression
We first show an example in which the intraprocedural state
retrogresses, e.g., releasing locks, should be considered when
generating NPD patches. A simplified code segment of CVE-
2022-41858 is shown in Figure 1, with an NPD error due to
the possible null pointer of sl->tty at Line 7. When con-
structing the repair statement, existing solutions only check if
sl->tty is null and generate a return statement according to
the void function type.
Fixed by CONCH. Apart from generating the if condition
and return statements, we ensure resource retrogression of
unlocking the occupied lock. First, we construct lock/unlock
function pairs to record the locking state. Then, when ana-
lyzing the CFG from the function entry to the error position,

void buggy(param1, param2){

 spin_lock(&sl->lock);

+ if(sl->tty == NULL){

+

+ return;

+ }

 function(sl->tty, …);

}

1

2

3

4

5

6

7

8

(a) Fixed by SOTA work

void buggy(param1, param2){

 spin_lock(&sl->lock);

+ if(sl->tty == NULL){

+ spin_unlock(&sl->lock);

+ return;

+ }

 function(sl->tty, …);

}

1

2

3

4

5

6

7

8

(b) Fixed by CONCH

Figure 1: An example of the necessity of unlocking an occu-
pied lock (CVE-2022-41858).

we match the functions in the pairs to check if further unlock
operation is required. If so, we extract the paired unlock func-
tion and insert it before the return statement, as shown in the
shadow rectangle of Figure 1(b).

3.2 Interprocedural State Propagation

We use two examples to show that the interprocedural state
propagation (e.g., global variable resetting, function argument
resetting, and entire call chain assessment) has been overly
neglected by existing approaches. We also explain how our
solution can correctly generate the fixes.

3.2.1 Function Argument Resetting

Figure 2 depicts an example where the patch generation is
affected by the restriction of only returning a single value. In
the C programming language, when a function necessitates
multiple return values, since only one value can be conveyed
through the return statement, the remaining values are trans-
mitted via function arguments. However, in existing solutions,
the return values passed through the arguments are often ne-
glected and need to be reset.

The simplified code segment of CVE-2022-2153 is shown
in Figure 2(a), where the function argument *r in function
buggy needs to be reset before returning since *r value will
be passed to the caller function as its return value. The
resetting operation of *r value can rectify the function state.
However, no existing fixing methods address this issue.
Fixed by CONCH. To fix this issue, the key is to obtain the
expected *r value before returning. By constructing the call
graph of the function buggy and analyzing the data flow of
function argument *r, we can determine that the *r value
is further returned by caller function as an if condition in
the function caller_caller. Specifically, if *r is equal to
0 that signifies a failure state, the function schedule_work
will not be called. Conversely, if *r has a non-zero value,
the schedule_work function will be invoked to conduct a
scheduling task. To generate a correct patch, it is essential to
reset the value of *r to 0 before leaving the security check,
as depicted by the shadow rectangle in Figure 2(b). This
resetting step ensures the program behaves as intended with
the NPD vulnerability mitigated.

bool buggy(int *r, …){

 *r = -1;

 if(condition1){

+ if (src == NULL){

+

+ return true;

+ }

 // return 0 if discarded

 *r = func(src->vcpu, …);

 return true;

 }

}

int caller(…){

 int r = -1;

 if(buggy(&r, …))

 return r;

}

int caller_caller(…){

 if(caller(…))

 schedule_work();

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

(a) Fixed by SOTA work

bool buggy(int *r, …){

 *r = -1;

 if(condition1){

+ if (src == NULL){

+ *r = 0;

+ return true;

+ }

 // return 0 if discarded

 *r = func(src->vcpu, …);

 return true;

 }

}

int caller(…){

 int r = -1;

 if(buggy(&r, …))

 return r;

}

int caller_caller(…){

 if(caller(…))

 schedule_work();

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

(b) Fixed by CONCH

Figure 2: An example of the necessity of resetting an argu-
ment in a function (CVE-2022-2153).

3.2.2 Call Chain Assessment

Figure 3 shows an example of how an NPD error should
be handled in the call chain. The simplified code segment
of CVE-2022-3112 has an NPD error at Line 7. Since the
failure of kzalloc returns null to the pointer new_ts, deref-
erencing the null pointer triggers the NPD error. However, the
function caller is unaware of this error as the buggy func-
tion of type void does not return any value to the caller. It
leads to the uninterrupted execution of the caller, failing
to handle this error appropriately. A correct patch requires
analyzing the code implementation of caller_caller since
it encompasses the value scope when caller encounters a
failure. However, existing approaches can only construct fix-
ing within the current function by checking if new_ts is null
and returning directly, considering the void return type.

void buggy(param1, param2,…){

 struct *new_ts;

 new_ts = kzalloc(sizeof());

+ if(new_ts == NULL)

+ return;

 new_ts->ts = ts;

}

int caller(param1, param2){

 int ret;

 if(error)

 return -EAGAIN;

 buggy(…);

 …

 return 0;

}

void caller_caller(param) {

 if(caller(…) < 0)

 break;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

(a) Fixed by SOTA work

- void buggy(param1, param2,…){

+ int buggy(param1, param2, …){

 struct *new_ts;

 new_ts = kzalloc(sizeof());

+ if(new_ts == NULL)

+ return -ENOMEM;

 new_ts->ts = ts;

}

int caller(param1, param2){

 int ret;

 if(error)

 return -EAGAIN;

- buggy(…);

+ ret = buggy(…);

+ if(ret)

+ return ret;

 …

 return 0;

}

void caller_caller(param) {

 if(caller(…) < 0)

 break;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

(b) Fixed by CONCH

Figure 3: An example of the necessity of handling an NPD
error in the call chain (CVE-2022-3112).

Fixed by CONCH. To fix this NPD error, we first conduct
intraprocedural analysis to generate an initial patch as shown
in Figure 3(a). Here, the caller does not have error-handling
statements, and the caller_caller handles the error when

caller returns a negative value. To fix the NPD error in the
call chain, the caller needs to return a negative value, while
the buggy should have an explicit return value for the caller.
Thus, we generate the patch in three steps. First, we modify
the return type of function buggy from void to int, facilitat-
ing the caller to handle the error. Second, we add a security
check so that the buggy returns a negative integer once the
new_ts is null. Third, when the caller receives the negative
integer, it returns the negative integer to the caller_caller.
The generated patch is shown in Figure 3(b).

4 CONCH Design

CONCH consists of four steps to fix NPD errors with contex-
tual checks, as shown in Figure 4. Note that CONCH focuses
on the scenarios where the NPD errors can be fixed by adding
if statement checks.

Context GraphNPD Program

NPD

Final Patch
patch

Initial Patch
patch

Figure 4: The CONCH overview: ❶ NPD context graph con-
struction; ❷ path-sensitive fixing position selection; ❸ in-
traprocedural state retrogression, and ❹ interprocedural state
propagation.

Given an NPD program, we first generate an NPD Context
Graph to preserve the semantics related to patch generation
by including the simplified control flow graph (CFG) of the
vulnerable function and the calling pattern of the caller and
callee functions. The context graph serves as a prerequisite
for the subsequent components. Second, we define four poli-
cies to select the fixing position based on the distribution of
the null position and the error positions. Given the policies,
we overcome the challenge of selecting the appropriate re-
pair point and we ensure the correct repair of vulnerabilities
without introducing redundancy patches. Third, the intrapro-
cedural state retrogression aims to generate an initial patch,
ensuring that the NPD error is correctly handled in the current
function. This step performs the if condition construction, lo-
cal resource retrogression, and return statement construction.
Fourth, we adopt the interprocedural state propagation to ob-
tain the final patch, ensuring that the generated patch handles
the NPD errors appropriately in the entire call chain. This
step addresses global variable resetting, function argument
resetting, and the entire call chain assessment.

4.1 NPD Context Graph Construction

For a given NPD program, we can generate an NPD context
graph in three steps, as shown in Figure 5.

NPD
Program

One-hop
Callee Function

Intraprocedural
CFG

Fault
Localization

Simplified
CFG

Interprocedural
CFG

SL Inference
Rules

Contextual Intraprocedural
CFG Construction

Contextual Interprocedural
CFG ConstructionFault Localization

Figure 5: Context graph construction for NPD program.

Contextual Intraprocedural CFG Construction. We con-
struct intraprocedural CFGs for all functions in the NPD pro-
gram, as well as the one-hop callee functions. The reasons that
we only use one-hop of callee information are two-fold. First,
if we consider all callee functions, the recursive tracing can
lead to path explosion, while most of them are not necessary
after processing. Second, according to real-world vulnerabil-
ity analysis, the one-hop callee function can cover most cases
in inferring the error positions. In some cases where one-hop
callee function analysis is insufficient to obtain the required
context, we conduct incremental analysis to analyze more
hops until the error position is obtained. Additionally, the
indirect control flow may hinder the connection of the callee
function, and we adopt the SOTA approach MLTA [20] to
refine the indirect targets. The generated contextual intrapro-
cedural CFGs extend the contextual information, providing a
prerequisite of call relations and path constraints for localizing
error positions.
Fault Localization. We rely on the separation logic and its
inference rules in Equation 1 to locate the NPD errors. We
obtain the null positions where the pointers are set to null
and the error positions where the null pointers are derefer-
enced to trigger errors. Separation logic is utilized to analyze
different execution paths, which are identified explicitly by
the intraprocedural CFG within the function. When a state-
ment dereferences a null or invalid pointer, an NPD error is
detected. In such cases, the null positions, the error positions,
and their involved execution paths are identified and recorded,
enabling precise error localization within the function and
facilitating the subsequent NPD mitigation.
Contextual Interprocedural CFG Construction. After ob-
taining the contextual intraprocedural CFGs of all functions,
along with the null and error positions and their corresponding
paths, we construct the interprocedural CFG by streamlining
the intraprocedural CFGs. We first prune the intraprocedural
CFG of the buggy function and only retain the nodes of the
path from the function entry to the error position. Then, for
the callee function containing the null position, we preserve
the error-handling statements and their return values in their
nodes. Next, we analyze the caller function of the buggy func-
tion and maintain the statements from the function entry to the
calling position of the buggy function. For special cases where
the direct caller cannot cover the error handling, we conduct
an incremental analysis to recursively trace deeper callers.
Finally, we connect these pruned CFGs together to generate

(a) One-null One-error (b) Multi-null One-error

(c) One-null Multi-error (d) Multi-null Multi-error

repair

null error
null

null

repair
error

repair

null
error

error

repair
null

null

error

error

Figure 6: 4 policies of path-sensitive fixing position selection.

an interprocedural CFG, containing all the states related to
the error handling while removing irrelevant statements.

4.2 Path-sensitive Fixing Position Selection

Based on the distribution of the null and error positions, we
define four different policies to select path-sensitive fixing
positions. As the SOTA approach, VFix [48] proposes a con-
gestion calculation to select a fixing position; however, it has
two limitations. First, the dynamic test case based localiza-
tion limits its scalability. Second, this congestion calculation
method may lead to ambiguity since all sequential statements
in the key path have the same congestion result. Therefore,
to select a proper fixing position, we analyze all the NPD
records containing commit information in MITRE [33] and
summarize four fixing position selection policies according to
different control flows, i.e., one null and one error positions,
multiple null and one error positions, one null and multiple
error positions, and multiple null and multiple error positions,
as shown in Figure 6. Our key principle of fixing position
selection is that the fixing position should be between the null
position and the error position, and repeated fixing should be
avoided.

The first type (i.e., one null position and one error posi-
tion) of fixing position selection is straightforward and widely
occurs. When the null position and error position are on the
same path without any branches, the typical fixing position is
closely behind the null position. This approach ensures that
the fix is placed between the null position and the error posi-
tion, diminishing potential derivative bugs. This fixing pattern
can be found in addressing the real-world vulnerabilities in
CVE-2022-3112 [26] and CVE-2022-41858 [28].

The second type (i.e., multiple null positions and one error
position) of fixing position selection arises when the null
positions are located within multiple if branches, as shown
in CVE-2023-1355 [32]. Instead of selecting an individual
fixing position for each branch, we select the fixing position
just prior to the error position to avoid repeated fixes. This
strategy allows us to check errors for both branches without
introducing redundant code.

The third type (i.e., one null position and multiple error
positions) of fixing position selection is similar to the second
type except that there is only one null position but multiple

error positions within the if branches. This fixing pattern
appears in CVE-2022-3153 [27]. Though it is possible to
select an individual fixing position for each error position, it
may result in redundant fixing since the fixing statements are
identical. To avoid redundancy, we select the fixing position
immediately after the null position. This approach allows us
to address both error positions while avoiding unnecessary
duplication of the fixing process.

The last type (i.e., multiple null and error positions) of
fixing position selection is the most complex. A real fixing
example can be found in the JFreeChart project [48]. To
determine the fixing position in such cases, we can consider
the null positions as one node and the error positions as an-
other node. The fixing position can be identified as the node
through which the flow from all null positions intersects with
the flow toward all error positions. This approach ensures
that the fixing position captures the necessary context and
effectively addresses both the null and error positions.

In general, the first type is the most general and popular
case and the other types have more constraints compared to
the first type, thus, we select different fixing position selection
policies.

4.3 Intraprocedural State Retrogression
We use the intraprocedural state retrogression to generate an
initial patch, which includes if condition construction, local
resource retrogression, and return statement construction.

4.3.1 If Condition Construction

The if check is an effective and widely used manner in NPD
fixes. When constructing the if conditions, a general format
would be if a checked variable is equal to null or an exception
value, then the function or loop is terminated. An alternative
format is to determine if the checked variable is not equal to
the exception value, then the existing code will be executed.
Here, the challenges are how to select the checked variable
and how to determine the exception value. Also, after obtain-
ing the variable and value to be checked, we need to choose
either the null checking to terminate the code or the non-null
checking to execute the existing code.

To solve this issue, we first analyze the existing patches for
previous CVEs and summarize three representative patch tem-
plates. In Figure 7(a), the variable pcpu_sum would be null
once the allocation fails in the function kvmalloc_array; in
this case, dereferencing pcpu_sum triggers an NPD error. To
fix this issue, null checking is conducted for pcpu_sum, and
the function terminates if it is null. In Figure 7(b), function
amvdec_add_ts returns a negative exception value when it
fails, and the returned value makes the received variable an in-
valid pointer. To address this vulnerability, the return value of
amvdec_add_ts needs to be assigned to a state variable ret
and check if ret is a non-zero value. While in Figure 7(c),
variable info->st_info_list does not represent a return

 pcpu_sum = kvmalloc_array(param1, param2, param3)

+ if(pcpu_sum == null)

+ return;

 this_sum = &pcpu_sum[cpu];

1

2

3

4

(a) CVE-2022-3107

- amvdev_add_ts(…); // return neg when fails

+ int ret = amvdec_add_ts(…);

+ if(ret)

+ return ret;

1

2

3

4

(b) CVE-2022-3112
+ if(info->st_info_list != NULL){

 clist_foreach(info->st_info_list, NULL);

 clist_free(info->st_info_list);

+ }

 free(info);

1

2

3

4

5

(c) CVE-2022-4121

Figure 7: If condition construction in typical NPD fixes.

value, and the following code has a data flow dependency
on this variable. If we check whether the variable is null and
return when it is null, the other statements of this function, i.e.,
freeing a function argument, cannot be completed. Therefore,
the generated patch executes the original statements when
info->st_info_list is not null.

Thus, to select the checked variable, we trace the CFG of
the current function and select the variable at the null posi-
tion since it is the root cause of the NPD errors. To deter-
mine the exception value, we analyze the statements of the
callee function at the null position and extract the return value
when the callee function fails. The failure return value can
be determined by analyzing the function specification and
enumerating the existing return values of callee failure. For
instance, if the specification defines a return value of 0 for
success and 1 for failure, we can use 1 as the exception value.
When the function specification is unavailable, we determine
the exception value by analyzing the existing return patterns,
e.g., null is an exception value if all error handling involves
returning null; a negative integer can be an exception value
when each failure state corresponds to a negative return value.

To construct the if condition, there are two scenarios for the
relationship between the checked variable and the exception
value. The most typical case is to check if the variable is equal
to the exception value when the checked variable receives the
failure return value of the callee function at the null position.
However, if statements between the null position and the
error position have a data flow dependency with the checked
variable (usually a free operation), a non-null check should be
conducted in the if condition, and the following code executes
when the non-null check holds.

4.3.2 Local Resource Retrogression

If the buggy function terminates due to an NPD error, the
local resources, e.g., allocated memory and occupied locks,
should be retrogressed to the initial states before continuing
the execution. Neglecting to perform these retrogressive op-
erations could lead to unreleased memory in the process or

 rcu_read_lock();

 slave = rcu_dereference(bond->curr_active_slave);

+ if(!slave){

+ rcu_read_unlock();

+ return -ENODEV;

+ }

 xs->xso.real_dev = slave->dev;

1

2

3

4

5

6

7

(a) lock releasing in CVE-2022-0286

 not_checked = kmalloc(sizeof(*not_checked) * 2);

 checked = kmalloc(sizeof(*checked) * 2);

+ if(!not_checked || !checked){

+ kfree(not_checked);

+ kfree(checked);

+ return;

+ }

 checked->data[] = …

 not_checked->data[] = …

1

2

3

4

5

6

7

8

9

(b) memory deallocation in CVE-2022-3104

Figure 8: Local resource retrogression in typical NPD fixes.

invisible locks to other processes.
Figure 8 illustrates two typical cases where retrogression

is needed before the function termination. In Figure 8(a), the
lock rcu_read_lock is invoked before the variable slave re-
ceives the return value of function rcu_dereference. If the
function fails, slave obtains the exception value and the pro-
gram terminates. However, before the program termination,
the occupied lock should be released; otherwise, other pro-
cesses may not request the lock successfully. In Figure 8(b),
variables not_checked and checked request a piece of mem-
ory space using malloc; however, if any of the allocations
fails, we need to free both memory spaces using kfree and
exit the current function. Note that kfree does nothing when
freeing an empty heap; thus, detecting a failed allocation and
freeing both memory spaces will not introduce an error.

To retrogress the local resources, we refine the process
into two phases. First, it is straightforward to free allocated
memory when an NPD error occurs. However, there are di-
verse pairs of allocation and free functions, e.g., malloc/free,
kmalloc/kfree, and g_malloc0/g_free, while developers
can customize their own allocation/free functions. Thus, we
traverse all the CVE records [30] until April 21, 2023, includ-
ing 200,759 items, and the official documents of the Linux
kernel and the GNU C Library (glibc), and retrieve the key-
word pairs with “alloc” and “free”. After manual verification,
we generate a memory allocation/free dictionary. When ana-
lyzing an NPD program, we search the keywords “alloc” and
“free” before the error position of the buggy function. We
compare keywords with the generated allocation/free dictio-
nary to determine if further free operations are needed. For
the user-defined allocation/free functions, the function names
usually contain the listed keywords; thus, we analyze the one-
hop call chain from the user-defined allocation/free functions
to the functions in the allocation/free dictionary to determine
the free operations.

Second, to release the occupied locks, the key challenge is
to find the lock/unlock function pairs. Intuitively, we search

the keywords with “lock” and “unlock” in the kernel func-
tions to generate a dictionary. Also, we analyze the CVE
records [30] to extract the lock/unlock pair information, such
as write_lock/write_unlock, write_lock_bh/write_unlock_bh,
and rcu_read_lock/rcu_read_unlock. During NPD program
analysis, we retrieve the key information “lock” and “unlock”
before the error position of the buggy function, and compare
them with the extracted lock/unlock pairs to determine the
further unlock operations.

In addition, CONCH handles other functions beyond stan-
dard C functions by analyzing callee functions along each
execution path. When a callee function belongs to the preced-
ing parts of paired functions, CONCH seeks the subsequent
part using name similarity and passed arguments.

4.3.3 Return Statement Construction

The repair process involves constructing a return statement,
which heavily relies on both the function’s return type and
the existing return statements within the current function. For
a void-type function, only a return statement is required
without any return value. However, for a bool-type function,
returning true or false represents a totally different result.
In addition, the function can return a null, a predefined macro,
or a negative integer. In some cases, the function executes the
continue statement to enter the next iteration or the break
statement to terminate the loop. The selection of return values
depends on the context statements and an incorrect return
value may lead to the chaotic logic of the program.

Figure 9 shows four different return types for handling NPD
cases. In Figure 9(a), input_node receives the return value of
GetNode and then the value of input_node is passed for fur-
ther operation. Thus, a null-pointer checking is required, i.e., if
input_node is null, the function returns to its caller function.
Since the return type of current function is bool and similar
return patterns for error handling (e.g., Line 2) can be referred
to, the return value for this null pointer handling should be
false. In Figure 9(b), function kcalloc returns null when
fails, so the variable imx_keep_uart_clocks requires a null-
pointer checking. Due to the void function type, the return
statement is added without any value. In Figure 9(c), if cl is
a null pointer, the function returns a predefined macro FAIL,
according to the adjacency error handling code (i.e., Line 2
and 7). In Figure 9(d), if val is null, the strcmp operation
cannot be completed. Because the operation is in a loop and a
single iteration failure does not mean the whole loop failure,
a continue statement is required when val is null.

Therefore, to construct the return value, we first analyze the
return type of the current function. If the return type is void, a
return statement is required as the initial attempt. However,
for the example in Figure 3, a simple return is not correct in
context and we talk about this scenario in § 4.4. Second, we
transfer the existing error-handling statements to the added if
check in the same function. For example, in Figure 9, three

 if(IstensorIdControlling(tensor_id))

 return false;

 input_node = graph.GetNode(tensor_id.node());

+ if(input_node == nullptr)

+ return false;

 return IsSwitch(*input_node);

1

2

3

4

5

6

(a) CVE-2022-23589

 if(imx_keep_uart_clocks){

 imx_uart_clocks = kcalloc(clk_count, …);

+ if(!imx_uart_clocks)

+ return;

 if(!of_stdout)

 return;

 }

1

2

3

4

5

6

7

(b) CVE-2022-3114

 if(rettv->vval.v_object == NULL)

 return FAIL;

 cl = rettv->vvval.v_object->obj->class;

+ if(cl == NULL)

+ return FAIL;

 if(get_func_argument(…) == FAIL)

 return FAIL;

1

2

3

4

5

6

7

(c) CVE-2023-1355

 while(scanindent(s)){

 var = scanname(s);

+ if(!val)

+ continue;

 if(strcmp(var, “command”) == 0)

 }

1

2

3

4

5

6

(d) CVE-2021-30219

Figure 9: Four typical return types in the NPD fixes.

cases are learned from the existing fixing patterns. Third, we
can learn the error-handling statements from the caller func-
tion, since the caller function may have the corresponding
statements to handle different return values of the callee func-
tion. For example, in Figure 3, the function caller_caller
handles a negative integer when the caller fails, so the patch
of caller needs to return a negative integer for failure. In
some cases, we only know the scope of the return value, such
as an integer or a negative integer, not the exact value; how-
ever, we can match them with the official error macros [5]
to obtain the exact return value, such as ENOMEM for Out of
Memory and EINVAL for Invalid Argument. After constructing
if condition, retrogressing local resources, and constructing
return statements, an initial patch is generated, guaranteeing
its correctness in the current function.

4.4 Interprocedural State Propagation
After obtaining the initial patch, the NPD error is handled
in the current function; however, the fix cannot guarantee
its correctness in the whole call chain. Thus, we introduce
the interprocedural state propagation to obtain the final patch
by resetting the global variables and function arguments and
handling the NPD errors in the entire call chain.

4.4.1 Global Variable and Function Argument Resetting

To reset the global variables and function arguments, we can
update the initial patch as illustrated in Algorithm 1. First,

Algorithm 1 Global Variable and Argument Resetting

Input: initial patch generated by intraprocedural analysis.
Output: updated patch with variable resetting.

1: procedure VARIABLE_RESETTING(DFG)
2: globals[]← null
3: arguments[]← null
4: while stmt ∈ (f unction_entry,error_position) do
5: if var /∈ local_vars then
6: if var ∈ f unc_arguments then
7: arguments.append()← var
8: if var ∈ global_vars then
9: globals.append()← var

10: while f uncs ∈ (buggy,err_handled) do
11: if var ∈ (globals[] || arguments[]) then
12: if resetting ∈ other error stmt then
13: var← resetting
14: else
15: var← data f low analysis
16: return updated patch with resetting inserted

we need to identify the global variables and function argu-
ments. In a buggy function, our analysis scope is from the
function entry to the last error position, since the subsequent
variables will not affect the error handling. We do not even
consider local variables in this scope because our purpose
is to reset the global variables and function arguments that
affect the function (Line 5). If the variables are passed from
the argument list, they are appended to the array arguments
(Line 7). However, identifying the global variables is com-
plex since their definitions are out of analysis scope; hence,
we extend the search space to the global statements prior to
the buggy function. Once the global variable definitions are
out of the current file, we traverse the included header files.
After identifying the global variables, we append them to the
array globals (Line 9). The identification process is shown in
Algorithm 1 of lines 2 to 9.

Then, we obtain the expected values of global variables and
function arguments. Our overall strategy is to infer the values
from either the existing error-handling code in the buggy
function or the data flow in the caller function. In the first
case, our observation is that if a global variable or a function
argument needs to be reset in a code snippet, it may be reset
in other statements of the current function (Line 12). For
example, Figure 2 shows the function argument *r requires a
reset operation while we can obtain its value from call chain
analysis in the context. The value can also be obtained from
the current function, since the func returns 0 to *r at Line
9 if the operation in the function is discarded. If no reset
statement can be referred to in the current function, we gather
information from its caller function via data flow analysis.
The second case usually occurs when requiring more return
values; however, only one value is directly returned while
others are passed via global variables or function arguments.

Hence, we analyze the data flow of the target variable in
the call chain from the buggy function to the caller of the
function that returns the target variable in its return statement.
By inferring the failure state in the caller, the target variable
value can be determined (Line 15). The resetting process is
shown in Algorithm 1 from Line 10 to Line 15.

4.4.2 Call Chain Assessment

In this step, we further update the patch to generate the final
patch. Our goal is to keep the generated patches correct in
the whole call chain; in other words, an NPD error should be
addressed over all the caller functions. We first analyze the
return statement in the updated patch to obtain the return type,
e.g., void, bool, and int. If the return type is void, the cur-
rent function does not return any value to its caller function,
thus the caller function will not be notified when the current
function fails. Hence, we need to check if the caller function
can execute without interruption when the buggy function
triggers the NPD return because an incorrect return value may
propagate errors to the caller functions silently. If the caller
function is also buggy, we recursively analyze the predecessor
caller function of the buggy function until reaching the func-
tion in which there is a statement to handle the error (we call
it the error-handled function). Then, for all functions between
the buggy function to the error-handled function, we update
them by adding error-handling statements according to the
semantics in the error-handled function. Finally, we update
the return type of the buggy function from void to int and
return a value to its caller. Several real-world vulnerabilities,
e.g., CVE-2022-3112 [26], follow this fixing pattern. If the
return type is not void, it already returns specific exception
values to its caller. Here, we can check if the caller handles
the return value correctly. If not, we update the caller function
according to the semantics in the updated patch. The process
to generate the final patch is shown in Algorithm 2. After
patching into the buggy program, we can obtain a correct
program where the NPD errors are handled in the entire call
chain.

5 Implementation

We implement CONCH with about 1,000 lines of Python
code, which includes null and error position identifications,
NPD context graph construction, fixing position selection,
and patch generation.
Null and Error Positions Identification. We build our sys-
tem on top of Facebook infer (FBinfer) [7]. Given an NPD
program, FBinfer takes the source code as input and outputs
the null and error positions and their corresponding paths
according to the separation logic and its reference rule in
Equation 1.
NPD Context Graph Construction. After obtaining the null
and error positions and their related paths, we locate the callee

Algorithm 2 NPD Fixing Assessment in Whole Call Chain

Input: updated patch with variable resetting.
Output: final patch with error handled in the call chain.

1: procedure ENTIRE_CHAIN_ASSESSING(CFG)
2: returns← ReturnStmtInPatch()
3: if returns ∈ void type then
4: if caller has normal return value then
5: while f uncs ∈ (buggy,error_handled) do
6: UpdateFunc(funcs)
7: returns← ReturnUpdate()
8: else
9: if caller handles incorrectly then

10: UpdateFunc(caller)
11: return final patch

functions at the null positions and analyze their implemen-
tation. Since we focus on the exception return values of the
callee functions to construct the if condition, we only preserve
the error-handling statements and their return statements of
the callee functions. Then, we traverse the files to obtain the
caller functions that call the buggy function and keep the
calling statements along with the calling conditions and their
return values. Finally, we generate the NPD context graph by
connecting the CFG of the buggy function (from the function
entry to the last error position) with the pruned CFG of the
caller and callee functions.
Fixing Position Selection. We obtain a subgraph from the
NPD context graph by only retaining the slice from the first
null position to the last error position, along with their corre-
sponding paths. In the subgraph, we mark each null position
and each error position. The fixing positions are selected by
calculating the distribution of the null and error positions
according to the predefined patterns in § 4.2.
Patch Generation. In the intraprocedural state retrogression,
the checked variable is obtained from the null position and the
checked value comes from the exception value of the callee
function. Then the relation between the checked variable and
the checked value is determined by the data dependency of
the subsequent code. For the local resource retrogression, we
create a function pair dictionary by retrieving the keywords in
the kernel and generic libraries. Then we match the functions
before the error position to determine the release operations.
CONCH extends its analysis beyond just standard C functions
by examining the functions called within each execution path.
If it detects that a called function is the first in a pair of related
functions, CONCH identifies the matching second function
based on the similarity in their names and the arguments
passed to them. The return statement construction relies on
the function type and existing error-handling statements in
the current function. When conducting interprocedural state
propagation, we rely on data flow analysis on the NPD context
graph to reset the global variables and arguments and assess
the initial patch in the entire call chain.

6 Evaluation

Our objective is to show that CONCH can significantly out-
perform the SOTA approaches (e.g., VFix) for repairing NPD
errors in terms of contextual correctness. By comparing
CONCH with SOTA approaches in fixing NPD vulnerabilities
reported in CVE, we find that CONCH can correctly repair
85% vulnerabilities while the SOTA approaches can fix up to
58.75%, outperforming accuracy of 26.25 percentage points.
In addition, we also evaluate the effectiveness of CONCH us-
ing the dataset of 18 NPD errors in Defects4j. CONCH can
successfully fix 16 NPD errors by generating patches that are
as correct as the developers’ manual fixes, while the SOTA
solutions can only generate up to 12 correct patches.

6.1 Experimental Setup

Datasets. To evaluate the accuracy of our method, we use
two real-world datasets. The first dataset comes from real-
world vulnerabilities, i.e., CVE records. We search in MITRE
with the keywords “Null Pointer Dereference” and get 2,188
records by April 2023. Among them, 177 records have the
commit information. We exclude the misclassified records
(i.e., not NPD errors), and race conditions are also beyond
our consideration. We obtain 81 CVE records and most of
them are from the Linux kernel. Regarding patches submitted
by developers, 80 vulnerabilities can be fixed by adding if
conditions, and only one vulnerability (CVE-2023-1095 [31])
is fixed by initializing the pointer. In this paper, we focus on
the case of adding the if check, i.e., 80 CVE records. The
second dataset consists of 18 NPD errors, coming from a
well-known benchmark, Defects4j, with 7 in Chart, 6 in
Closure, 2 in Lang, 2 in Math, and 1 in time.
Other Program Repair Methods. VFix [48] represents the
SOTA approach to addressing NPD issues with the best patch
accuracy. One of its distinguishing features is its utilization
of value-flow information within programs, enabling precise
localization of suspicious statements and effectively reducing
the search space for potential patches. By narrowing down the
patch space, VFix significantly enhances the efficiency of the
generate-and-validate process while increasing the likelihood
of discovering the correct patches. In comparative evalua-
tions focused on NPDs, VFix has demonstrated superior per-
formance to other SOTA Automatic Program Repair (APR)
techniques such as GenProg [15], ACS [47], CapGen [46],
SimFix [12], and NPEfix [6]. In this paper, besides the VFix,
we also select one NPD-related method (i.e., NFEfix) and
one general-purpose APR solution (i.e., SimFix) as the base-
lines for measuring the accuracy of NPD fixing, since both of
them represent the best patch generation accuracy evaluated
in VFix.
System Runtime. Our experiments are conducted on a ma-
chine with an Intel Core i7 1.8GHz CPU and 16GB memory,
running Ubuntu 22.04 with FBinfer 1.1.0.

6.2 Performance on CVE Dataset
There are 80 records in the CVE dataset. CONCH can gen-
erate 68 correct patches and 12 incorrect patches, with an
accuracy rate of 85%. Among 68 correct patches, 36 fixings
are consistent with the developers’ patches, and 32 patches
have semantic equivalence to the developers’ patches. We
also apply SOTA approaches to generate NPD fixes for the
first dataset; however, they only achieve an accuracy rate of
up to 58.75%. Thus CONCH outperforms SOTA approaches
with an accuracy of 26.25%.
Same Fixes as Developers’ Patches. Among 36 patches that
are exactly the same as the developers’ fixes, there are 23 null
checkings, 12 not-null checkings, and 1 other value check-
ing. For return statements, 11 fixings do not require return
statements, 5 fixes return without value, 4 patches return bool
values, 3 patches use break statement to exit the loop, and
the other 13 patches return predefined values or goto labeled
code segment. Additionally, there are 3 patches requiring ex-
tra operations to free allocated memory (CVE-2022-3104),
release the occupied lock (CVE-2022-41858), and reset the
function argument (CVE-2022-2153) before return. We list
such cases in § A.
Semantic-Equivalent Fixes. The 32 patches that have se-
mantic equivalence to the developers’ fixes can be divided
into three categories. First, the constructed fix identifies the
attribute of the return value (e.g., positive/negative, zero/non-
zero) but does not have the exact value compared to the devel-
opers’ fixes. There are 15 patches for such cases. For instance,
when fixing CVE-2022-47021 [29], a negative return value
of function op_get_data represents the failure state, and the
developer uses the macro OP_EFAULT (-129); however, we
cannot obtain this macro in context and hence return another
macro OP_EINVAL (-131).

1 commit 1540d334a04d874c2aa9d26b82dbbcd4bc5a78de
2 diff --git a/src/testing.c b/src/testing.c
3 @@ -616,6 +616,11 @@ f_assert_fails(typval_T *argvars,

typval_T *rettv)
4 // no allocated memory, no lock, no global variable
5 expected = tv_get_string_buf_chk(tv, buf);
6 + if (expected == NULL)
7 + goto theend;
8 ... // one hundred lines of other codes
9 theend:

10 trylevel = save_trylevel;
11 suppress_errthrow = FALSE;
12 // many unrelated codes
13 ...

Listing 1: Fix of CVE-2022-3153 generated by developer.

1 diff --git a/src/testing.c b/src/testing.c
2 @@ -616,6 +616,11 @@ f_assert_fails(typval_T *argvars,

typval_T *rettv)
3 // no allocated memory, no lock, no global variable
4 expected = tv_get_string_buf_chk(tv, buf);
5 + if (expected == NULL)
6 + return;
7 ...

Listing 2: Fix of CVE-2022-3153 generated by CONCH.

Second, seven patches provided by the developers jump to

existing error-handling statements using the goto statement.
However, there could be hundreds of lines of code between
the fixing position and the label position, which makes fur-
ther analysis complex and confusing. Therefore, we try to
avoid the goto statement and then simplify the generated
patches. For instance, List 1 shows the patch for CVE-2022-
3153 generated by the developer. The fix reuses the existing
error-handling statements. When the pointer expected is null,
the program will jump into the label to conduct very complex
processing. Since there are one hundred lines of code between
the if check position and the label, the difficulty of further
analysis increases. As a comparison, when we generate the
patch, we first verify that there is no allocated memory, no
lock, and no modified global variable, before the fixing po-
sition. According to the void return type, we return directly
when determining that expected is null, as shown in List 2.

Third, for the other 10 patches, the developers’ patches and
the patches generated by CONCH have the same results but are
represented in different ways, which include two aspects. The
first one is that the developers may use a range to indicate a
specific value, but we assess that value directly. For example,
when dealing with non-negative integers, a developer may
use a check for a value less than 1 to signify an empty state,
shown in List 3; however, we simply check whether the value
is equal to 0. The second one is that the developer may check
the member of a pointer for its empty state, while we cannot
obtain the detailed member information and hence check the
null pointer directly.

1 commit 4ec0ef3a82125efc36173062a50624550a900ae0
2 diff --git a/drivers/usb/misc/iowarrior.c b/drivers/usb/misc/

iowarrior.c
3 @@ -787,6 +787,12 @@ static int iowarrior_probe(struct

usb_interface *interface, const struct usb_device_id *id
)

4 + if (iface_desc->desc.bNumEndpoints < 1) {
5 + dev_err(&interface->dev, "Invalid number\n");
6 + retval = -EINVAL;
7 + goto error;
8 + }

Listing 3: Fix of CVE-2016-2188 generated by developer.

Incorrect Fixes. CONCH cannot generate correct patches for
12 vulnerabilities, as listed in Table 1. The key reason is that
we cannot obtain the checked variables or functions in context
when constructing the if conditions. First, some class/struct
object members cannot be obtained in context. For example,
we can get the definition and usage of an object pointer in a
function and add null pointer checks; however, the member
of this pointer may require further checks. Due to no spe-
cific information to determine which member to check, we
can only generate a partially correct patch to check the ob-
ject pointer. Second, the relation between the variables and
the specific values may not be inferred in context. Addition-
ally, some complex execution logic can only be obtained from
experts’ in-depth analysis, such as uaddr == uaddr2 in CVE-
2021-6647, which breaks the rule of different addresses [24].
In such cases, CONCH can generate patches; however, the

patches cannot fix the vulnerabilities. Third, high-customized
functions are required in some special scenarios, such as the
sanity check functions, validation check functions, and vCPU
initializing functions. Even if we can locate the error posi-
tions; however, we cannot find the appropriate functions to
fix the vulnerabilities, thus CONCH cannot generate patches
in this case.
Comparison with SOTA Approaches. For those 80 NPD er-
rors, we also apply SOTA approaches to generate patches. The
comparison results between CONCH and SOTA approaches
for repairing real-world vulnerabilities are shown in Table 2.
We can generate 36 patches that are the same as the develop-
ers’ patches. Specifically, three patches implement the break
statement to leave a loop, one uses spin_unlock to relin-
quish a lock, another employs kfree to release memory, and
another resets a function argument. Additionally, one patch
checks a unique function available in the context. These listed
cases are beyond the scope of SOTA approaches: VFix has
the capacity to generate 29 patches in total, NPEfix generates
15 correct patches, and SimFix has 18 correct patches. We can
also generate 32 semantic equivalence patches, among which
11 need contextual information to frame if statements, two
are for unlocking designated locks, and one addresses mem-
ory release. Based on these results, VFix can formulate 18
patches, while NPEfix and SimFix can muster 4 and 8 patches
respectively. Concerning the 12 vulnerabilities for which we
couldn’t create precise patches, four of them have no patches
proposed, three of them cannot catch the error, and five of
them generate patches but does not handle resource properly.
All of the SOTA approaches cannot yield any results for these
12 vulnerabilities, with an accuracy of less than 58.75%.
The Necessity of Contextual Checks. To demonstrate the
necessity of introducing intraprocedural state retrogression
and interprocedural state propagation, we evaluate the im-
pact of the local resource retrogression, global variable and
function argument resetting, and entire call chain assessment.
The results show that six patches require the unlocking or
memory-freeing operation, one fixing needs the function ar-
gument resetting, and three patches require multiple layers of
caller functions to handle the NPD error. These cases occupy
a proportion of 14.7% in the correctly generated patches.

We also analyze the number of layers of the call relation
from the NPD context graph between the first caller function
and the error position. We focus on the programs that have
been correctly handled by CONCH. The result is shown in
Figure 10. 55 programs have only one caller function, while
eight vulnerable programs have two caller functions. There
is one buggy program with four caller functions, one with
five caller functions, two buggy programs with eight caller
functions, and one buggy program with 15 caller functions.
Among them, 65 programs can be handled in one layer, while
the other three buggy programs require two layers (i.e., the
caller of the caller function handles the error case).
Performance Overhead. The performance overhead of

Table 1: The reasons that CONCH cannot generate correct patches and we provide some partially correct patches.

Category CVE ID If Condition Generated Patches Why CONCH Cannot Generate Correct Patches

Unobtainable Member

CVE-2022-1674 rmp->regprog != NULL rmp != NULL member regprog cannot be obtained in context
CVE-2022-1620 rmp->regprog != NULL rmp != NULL member regprog cannot be obtained in context
CVE-2016-2782 serial->num_bulk_in < 2 serial != NULL member num_bulk_in cannot be obtained in context
CVE-2014-0101 !net->sctp.auth_enable net == NULL member sctp.auth_enable cannot be obtained in context
CVE-2013-0313 inode->i_op->removexattr != NULL inode->i_op != NULL removexattr is not a function in context

Unobtainable Relation
CVE-2022-2874 cctx->ctx_skip != SKIP_YES cctx != NULL relation with SKIP_YES cannot be obtained in context
CVE-2018-1092 ino == EXT4_ROOT_INO ino == 0 relation with EXT4_ROOT_INO cannot be obtained in context
CVE-2012-6647 uaddr == uaddr2 uaddr && uaddr2 relation that uaddr is equal to uaddr2 cannot be obtained in context

Special Function

CVE-2022-3621 nilfs_is_metadata_file_inode(inode) - special function for sanity check
CVE-2022-2302 JFS_IP(ipimap)->i_imap - special function for validation check
CVE-2013-5634 !kvm_vcpu_initialized(vcpu) - special function for initializing vCPU
CVE-2013-4119 !SecIsValidHandle(handle) - special function for validation check

Table 2: Comparison between CONCH and SOTA approaches
for repairing real-world vulnerabilities.

Same Fixing Semantic Equivalence Incorrect Patches Proportion

VFix 29 18 33 58.75%
NPEfix 15 4 61 23.75%
SimFix 18 8 54 32.5%
CONCH 36 32 12 85%

25

50

75

100

0 5 10 15

C
D

F
 (

%
)

Numbers for Callers or Layers

Numbers of caller function
Layers until handling an NPD error

Figure 10: Numbers of callers and layers for CVE Dataset.

CONCH is mainly from locating the null pointer and the error
positions using FBinfer [7], constructing the contextual graph
for each vulnerable function, obtaining the required informa-
tion, and generating patches. Specifically, for each NPD error,
identifying vulnerable positions and outputting the error in-
formation cost 16.17 seconds on average. Constructing the
contextual graph by combining the intraprocedural and inter-
procedural graphs takes about 10 seconds, in which the cost
of constructing an intraprocedural graph is negligible (about
0.006 seconds), and querying and connecting each caller or
callee function takes about six seconds. Finally, the cost of
traversing the paths and obtaining the function pair accord-
ing to the predefined patterns can be negligible, about 0.006
seconds.

6.3 Performance on Benchmark Dataset

The second dataset contains 18 NPD errors collected from
Defects4j, which is a well-known benchmark suite used for
evaluating APR tools. To be consistent, we select the same
version 1.0.1 as tested by VFix, and the detailed information
about the collected dataset is shown in Table 4 in § B. Since
the accuracy of patch generation for NPEfix and SimFix in
fixing this dataset has been tested in VFix and VFix outper-
forms both of them, we only compare CONCH with VFix.
The comparison result is shown in Table 3. We can generate
16 correct patches and 2 incorrect patches, resulting in an
accuracy of 88.89%. As a comparison, VFix can generate
12 correct patches and 6 incorrect patches, resulting in an
accuracy of 66.67%. Our result outperforms VFix with an
accuracy of 22.22%.
Same Fixes as Developers’ Patches. Among these correct
patches, VFix has the ability to generate 10 patches that are
identical to the fixes made by developers. These 10 patches
contain 6 null checks and 4 non-null checks. In the case of
null checks, the patches simply return an existing variable, a
bool value, or null without processing any intermediate states.
The non-null checks execute the existing code. CONCH can
address all of the vulnerabilities that VFix can fix, as well as
an additional vulnerability that requires the use of a continue
statement to skip a single iteration. Such a vulnerability is
beyond the scope of VFix.
Semantic-Equivalent Fixes. Besides generating the 10 cor-
rect patches, VFix can also generate two semantic-equivalent
patches. For the first patch, the developer checks the existence
of the next node by calling hasNext, while VFix directly per-
forms a null check for the next node. The second case pertains
to the developer checking the invalid value (NaN), whereas
VFix can produce a similar outcome. In contrast, CONCH can
handle these two scenarios as well as three other cases that
involve error message logging.
Incorrect Fixes. CONCH is capable of generating partially
correct patches for two bugs. The first bug occurs when a
variable is null in an if branch, and the developer replaces it

with a customized function. In such cases, we skip the branch,
resulting in an inability to reproduce the same customized
function. The second case involves resetting a special variable
within a branch, which cannot be accomplished in the relevant
context. As a consequence, CONCH is incapable of generating
precise fixes for these two bugs. Apart from these cases, VFix
is unable to address the remaining four bugs, which include
throwing the error message and exiting the loop.
The Necessity of Contextual Checks. In the second dataset,
16 programs have only one caller function, while the remain-
ing two have two caller functions. Furthermore, all of them
only require a single layer of handling until the errors are
resolved.
Performance Overhead. When reasoning about this bench-
mark, we extract the buggy codes and modify them to the
format that FBinfer can compile without changing the previ-
ous logic. Then FBinfer does not require compiling the whole
project, instead of running the functions in the tested dataset,
with the performance overhead for creating the dictionaries
and generating correct patches within 10 seconds.

Table 3: NPD errors in Defects4j and comparison between
CONCH and VFix for repairing NPD errors in Defects4j.

Project #NPD
Fixed by VFix Fixed by CONCH

Same Semantic Incorrect Same Semantic Incorrect

Chart 7 5 0 2 5 2 0
Closure 6 2 1 3 2 2 2
Lang 2 1 0 1 2 0 0
Math 2 1 1 0 1 1 0
Time 1 1 0 0 1 0 0

Total 18 10 2 6 11 5 2

7 Discussion

Scope and Limitations. Our tool is on top of FBinfer, which
is capable of analyzing Java, C, and Objective-C. In this paper,
we evaluated C for the first dataset and Java for the second
dataset. We will test more different supported languages in fur-
ther research. The limitations of CONCH are two-fold. First,
CONCH may not precisely fix NPD bugs when indirect calls
halt the connection of different CFGs. Though the SOTA ap-
proach MLTA [20] has been adopted to refine indirect-call
targets, the unidentified indirect targets (due to the limitations
of MLTA) may still affect accuracy. Second, CONCH may
not generate correct patches when essential information is
unavailable in context. Specifically, when inferring the rela-
tion between the variables and values in the if statement, we
cannot get the correct results if the relation is unreachable
in context. For example, in List 4, the relationship between
the variable ino and macro EXT4_ROOT_INO cannot be ob-
tained in context, leading to a failed patch. Also, when we
infer the previous states for the global variables and return

value, we rely on the information provided by the current
function and the caller function. Therefore, failing to obtain
this information affects the correct patch generation.

1 diff --git a/fs/ext4/inode.c b/fs/ext4/inode.c
2 @@ -4732,6 +4732,12 @@ struct inode *ext4_iget(struct

super_block *sb, unsigned long ino)
3 + if((ino == EXT4_ROOT_INO)&&(!raw_inode->i_links_count)){
4 + EXT4_ERROR_INODE(inode, "root inode unallocated");
5 + ret = -EFSCORRUPTED;
6 + goto bad_inode;
7 + }

Listing 4: Fixing for CVE-2018-1092 generated by developer.

Race conditions are beyond our scope. The reasons come
at three folds. First, race conditions can be timing-dependent,
which means that they may only occur under specific timing
conditions, making it difficult to detect and reproduce the
bug in a controlled environment. Second, race conditions
are often non-deterministic, meaning that the outcome of a
program can vary depending on the order in which threads
execute. Third, fixing a race condition may introduce new
bugs, especially when the fix involves changing the order of
execution or adding synchronization.
Patch Quality. The quality of proposed patches relies on ISL
accuracy, the coverage of fixing position selection, patch gen-
eration, and patch verification. As illustrated in ISL, there are
no false positives in error detection if the code meets the pro-
posed error patterns [37]. Also, the proposed four fixing posi-
tion selection policies can cover all cases in our tested dataset.
When generating the patches, the return value can be extracted
from the function return type, existing error-handling state-
ments in the current function, and error-handling statements
in the caller function. We also conduct the intraprocedural
and interprocedural analysis to evaluate it in the call chain
to further verify the correctness of the obtained return value.
After obtaining the generated patches, their quality can be
guaranteed for the scenarios in which a simple pointer re-
ceives the return value of a failed function. However, for the
struct pointer, the patches require further manual verification,
since the relation with the member and special function of the
struct pointer may not be obtained. In addition, after generat-
ing patches, we check the patch equivalence with the patches
developed by the developers manually. We will automate the
checking process in future work.
Scalability and Usability. In this paper, we generate patches
for NPD errors with contextual checks, and it is promising
to extend this method to a broader scenario where contex-
tual checks are required to make the program consistent after
adding if checks. Specifically, for all vulnerabilities that can
be fixed by adding an if check, we can conduct path-sensitive
fixing position selection, perform intraprocedural state retro-
gression to build if condition, retrogress the local resources
including freeing the allocated memory and releasing the
occupied lock, and construct return statements to obtain an
initial patch. Finally, we can conduct the interprocedural state
propagation to reset the global variable and function argument

and assess the initial patch in the call chain to generate the
final patch.

We also input all the tested buggy programs into Chat-
GPT [35] to evaluate the performance on NPD fixing. Our test
method is divided into two ways: only inputting the vulnera-
ble code, and inputting the vulnerable code with labeled error
position. Unfortunately, if we just input the vulnerable code,
the result of fault localization in ChatGPT is much worse than
FBinfer. If we input both the vulnerable code and the error
position, the generated results fail to consider the contextual
information, with a fixed format as “i f (p! = null) return;”.
The reasons that ChatGPT cannot generate correct patches
come at two folds: i) when conducting intraprocedural analy-
sis, there is no existing pattern to be learned; ii) for interproce-
dural analysis, the sequence-based method always ignores the
call relation, failing to analyze the large code base projects.

8 Related Work

1) Automatic Program Repair. The search-based and
constraint-based repairs are two popular automatic program
repair techniques. Search-based repair techniques, such as
GenProg [15], RSRepair [36], and HDRepair [14], utilize pre-
defined templates and search algorithms to explore search
spaces and generate potential bug-fixing patches. Another set
of techniques, including AE [45], SPR [18], and Prophet [19],
employ predefined transformation schemas and probabilistic
models to identify and apply syntactic fragments, aiming to
indirectly achieve the desired semantic effect for bug fixing
based on a given test suite.

Constraint-based repair techniques, such as DirectFix [22],
Angelix [23], and SemFix [34], utilize a set of constraints
to guide the search for a solution and traditionally rely on
test cases for patch validation, which can lead to overfitting
problems [41]. SemGraft [21] references a correct program
to generate input-output constraints for a semantic-equivalent
buggy program, achieving higher-quality patches with partial
correctness guarantees.

CONCH combines search-based and constraint-based repair
techniques to conduct NPD error fixing. We first use separa-
tion logic to reason about the program errors and then limit
the search space by utilizing the contextual information and
with the assistance of caller functions.
2) Null Pointer Dereference Fixing. NPEfix [6] proposes run-
time strategies, Sinha et al. [40] identify fault sources, and
VFix [48] localizes statements using static and dynamic anal-
ysis. However, their approaches may produce incomplete or
function-specific patches [17]. As a comparison, our approach
contains contextual checking, guaranteeing one NPD error is
handled successfully in all paths. Also, our approach takes
the memory freeing and lock resetting operation into consid-
eration, enhancing the usability of NPD fixing.
3) Separation Logic to Fix Memory-related Bugs. Mem-
Fix [16] simplifies the call graph and solves double-free and

use-after-free issues using separation logic and a cover prob-
lem. SAVER [10] builds on MemFix by introducing an object
flow graph to analyze memory-related object flow and gener-
ate patches within if branches. Compared to them, we rely on
separation logic to generate patches for NPD issues. We first
generate CFG and call graphs to locate the buggy positions
and record the null position and error position of the buggy
program. Then we select the fixing positions and construct
repair statements combined with contextual checks, ensuring
that NPD errors are handled in the entire call chain.

9 Conclusion

To address the challenges of generating accurate fixes for
NPD errors, we propose CONCH to generate correct patches
with contextual checks. We first generate an NPD context
graph to preserve the semantics related to patch generation.
Then we define four fixing position selection policies based
on the distribution of the null and error positions, ensuring all
errors can be resolved without introducing redundancy fixing.
Next, we propose the intraprocedural state retrogression to
generate an initial patch that includes building if condition,
retrogressing local resources, and constructing return state-
ments. Finally, we conduct interprocedural state propagation
to reset some global variables and arguments and assess the
initial patch in the whole call chain to obtain the final patch.
We evaluate the effectiveness of CONCH with two real-world
datasets. The experimental results show CONCH outperforms
the SOTA approach over an accuracy of 22%.

Acknowledgments

We thank our Shepherd and the reviewers for their insightful
feedback. This work was partially supported by ONR grant
N00014-23-1-2122, NSF grant CNS-1822094, and NSFC un-
der Grant 62132011.

References
[1] Anindya Banerjee and David A Naumann. Local reasoning for global

invariants, part ii: Dynamic boundaries. Journal of the ACM (JACM),
60(3):1–73, 2013.

[2] Ernie Cohen, Michał Moskal, Wolfram Schulte, and Stephan Tobies.
Local verification of global invariants in concurrent programs. In Com-
puter Aided Verification: 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010. Proceedings 22, pages 480–494.
Springer, 2010.

[3] Cybersecurity Help. NULL pointer dereference in GnuTLS. https:
//www.cybersecurity-help.cz/vdb/SB2020090415, 2020.

[4] Cybersecurity Help. NULL pointer dereference in Vim. https://www.
cybersecurity-help.cz/vdb/SB2023053071, 2023.

[5] Linux Kernel Developer. Error macros. https://elixir.bootlin.
com/linux/latest/source/include/uapi/asm-generic/
errno-base.h, 2023.

https://www.cybersecurity-help.cz/vdb/SB2020090415
https://www.cybersecurity-help.cz/vdb/SB2020090415
https://www.cybersecurity-help.cz/vdb/SB2023053071
https://www.cybersecurity-help.cz/vdb/SB2023053071
https://elixir.bootlin.com/linux/latest/source/include/uapi/asm-generic/errno-base.h
https://elixir.bootlin.com/linux/latest/source/include/uapi/asm-generic/errno-base.h
https://elixir.bootlin.com/linux/latest/source/include/uapi/asm-generic/errno-base.h

[6] Thomas Durieux, Benoit Cornu, Lionel Seinturier, and Martin Mon-
perrus. Dynamic patch generation for null pointer exceptions using
metaprogramming. In 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 349–
358. IEEE, 2017.

[7] Facebook. Infer static analyzer. https://fbinfer.com, 2023.

[8] GeeksforGeeks. Security issues in C language. https://www.
geeksforgeeks.org/security-issues-in-c-language, 2022.

[9] Harness Team. The Top 10 Exception Types in Production Java Ap-
plications – Based on 1B Events. https://www.harness.io/blog/
10-exception-types-in-production-java-applications,
2020.

[10] Seongjoon Hong, Junhee Lee, Jeongsoo Lee, and Hakjoo Oh. Saver:
scalable, precise, and safe memory-error repair. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering,
pages 271–283, 2020.

[11] ImmuniWeb. NULL Pointer Dereference. https://www.immuniweb.
com/vulnerability/null-pointer-dereference.html, 2020.

[12] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun
Chen. Shaping program repair space with existing patches and sim-
ilar code. In Proceedings of the 27th ACM SIGSOFT international
symposium on software testing and analysis, pages 298–309, 2018.

[13] Ioannis T Kassios. The dynamic frames theory. Formal Aspects of
Computing, 23:267–288, 2011.

[14] Xuan Bach D Le, David Lo, and Claire Le Goues. History driven
program repair. In 2016 IEEE 23rd international conference on soft-
ware analysis, evolution, and reengineering (SANER), volume 1, pages
213–224. IEEE, 2016.

[15] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley
Weimer. Genprog: A generic method for automatic software repair.
Ieee transactions on software engineering, 38(1):54–72, 2011.

[16] Junhee Lee, Seongjoon Hong, and Hakjoo Oh. Memfix: Static analysis-
based repair of memory deallocation errors for c. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering,
page 95–106, 2018.

[17] Junhee Lee, Seongjoon Hong, and Hakjoo Oh. NPEX: repairing Java
null pointer exceptions without tests. In Proceedings of the 44th In-
ternational Conference on Software Engineering, pages 1532–1544,
2022.

[18] Fan Long and Martin Rinard. An analysis of the search spaces for
generate and validate patch generation systems. In Proceedings of
the 38th International Conference on Software Engineering, pages
702–713, 2016.

[19] Fan Long and Martin Rinard. Automatic patch generation by learning
correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
298–312, 2016.

[20] Kangjie Lu and Hong Hu. Where does it go? refining indirect-call
targets with multi-layer type analysis. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages
1867–1881, 2019.

[21] Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske,
and Abhik Roychoudhury. Semantic program repair using a reference
implementation. In Proceedings of the 40th International Conference
on Software Engineering, pages 129–139, 2018.

[22] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Directfix:
Looking for simple program repairs. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, volume 1, pages
448–458. IEEE, 2015.

[23] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix:
Scalable multiline program patch synthesis via symbolic analysis. In
Proceedings of the 38th international conference on software engineer-
ing, pages 691–701, 2016.

[24] MITRE. CVE-2012-6647. https://github.com/torvalds/linux/
commit/6f7b0a2a5c0fb03be7c25bd1745baa50582348ef, 2012.

[25] MITRE. CVE-2022-2153. https://github.com/torvalds/linux/
commit/00b5f37189d24ac3ed46cb7f11742094778c46ce, 2022.

[26] MITRE. CVE-2022-3112. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2022-3112, 2022.

[27] MITRE. CVE-2022-3153. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2022-3153, 2022.

[28] MITRE. CVE-2022-41858. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2022-41858, 2022.

[29] MITRE. CVE-2022-47021. https://github.com/xiph/opusfile/
commit/0a4cd796df5b030cb866f3f4a5e41a4b92caddf5, 2022.

[30] MITRE. All CVE Records. https://cve.mitre.org/cve/search_
cve_list.html, 2023.

[31] MITRE. CVE-2023-1095. https://github.com/torvalds/linux/
commit/580077855a40741cf511766129702d97ff02f4d9, 2023.

[32] MITRE. CVE-2023-1355. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2023-1355, 2023.

[33] MITRE. Null pointer dereference records. https://cve.mitre.org/
cgi-bin/cvekey.cgi?keyword=NULL+pointer+dereference,
2023.

[34] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and
Satish Chandra. Semfix: Program repair via semantic analysis. In 2013
35th International Conference on Software Engineering (ICSE), pages
772–781. IEEE, 2013.

[35] OpenAI. ChatGPT. https://openai.com/blog/chatgpt, 2023.

[36] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang.
The strength of random search on automated program repair. In Pro-
ceedings of the 36th International Conference on Software Engineering,
pages 254–265, 2014.

[37] Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter
O’Hearn, and Jules Villard. Local reasoning about the presence of
bugs: Incorrectness separation logic. In Computer Aided Verification:
32nd International Conference, CAV 2020, Los Angeles, CA, USA, July
21–24, 2020, Proceedings, Part II 32, pages 225–252. Springer, 2020.

[38] John C Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings 17th Annual IEEE Symposium on Logic in
Computer Science, pages 55–74. IEEE, 2002.

[39] Seth Jenkins. Exploiting null-dereferences in the Linux ker-
nel. https://googleprojectzero.blogspot.com/2023/01/
exploiting-null-dereferences-in-linux.html, 2023.

[40] Saurabh Sinha, Hina Shah, Carsten Görg, Shujuan Jiang, Mijung Kim,
and Mary Jean Harrold. Fault localization and repair for java runtime
exceptions. In Proceedings of the eighteenth international symposium
on Software testing and analysis, pages 153–164, 2009.

[41] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. Is the
cure worse than the disease? overfitting in automated program repair. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 532–543, 2015.

[42] Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin Monper-
rus, and Marcelo A. Maia. Dissection of a bug dataset: Anatomy of
395 patches from defects4j. In Proceedings of SANER, 2018.

[43] WIKIPEDIA. Hoare logic. https://en.wikipedia.org/wiki/
Hoare_logic, 2023.

https://fbinfer.com
https://www.geeksforgeeks.org/security-issues-in-c-language
https://www.geeksforgeeks.org/security-issues-in-c-language
https://www.harness.io/blog/10-exception-types-in-production-java-applications
https://www.harness.io/blog/10-exception-types-in-production-java-applications
https://www.immuniweb.com/vulnerability/null-pointer-dereference.html
https://www.immuniweb.com/vulnerability/null-pointer-dereference.html
https://github.com/torvalds/linux/commit/6f7b0a2a5c0fb03be7c25bd1745baa50582348ef
https://github.com/torvalds/linux/commit/6f7b0a2a5c0fb03be7c25bd1745baa50582348ef
https://github.com/torvalds/linux/commit/00b5f37189d24ac3ed46cb7f11742094778c46ce
https://github.com/torvalds/linux/commit/00b5f37189d24ac3ed46cb7f11742094778c46ce
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-3112
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-3112
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-3153
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-3153
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-41858
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-41858
https://github.com/xiph/opusfile/commit/0a4cd796df5b030cb866f3f4a5e41a4b92caddf5
https://github.com/xiph/opusfile/commit/0a4cd796df5b030cb866f3f4a5e41a4b92caddf5
https://cve.mitre.org/cve/search_cve_list.html
https://cve.mitre.org/cve/search_cve_list.html
https://github.com/torvalds/linux/commit/580077855a40741cf511766129702d97ff02f4d9
https://github.com/torvalds/linux/commit/580077855a40741cf511766129702d97ff02f4d9
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-1355
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-1355
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=NULL+pointer+dereference
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=NULL+pointer+dereference
https://openai.com/blog/chatgpt
https://googleprojectzero.blogspot.com/2023/01/exploiting-null-dereferences-in-linux.html
https://googleprojectzero.blogspot.com/2023/01/exploiting-null-dereferences-in-linux.html
https://en.wikipedia.org/wiki/Hoare_logic
https://en.wikipedia.org/wiki/Hoare_logic

[44] Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, and Sushil Jajodia.
Patchdb: A large-scale security patch dataset. In 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pages 149–160. IEEE, 2021.

[45] Westley Weimer, Zachary P Fry, and Stephanie Forrest. Leveraging
program equivalence for adaptive program repair: Models and first re-
sults. In 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 356–366. IEEE, 2013.

[46] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Che-
ung. Context-aware patch generation for better automated program
repair. In Proceedings of the 40th international conference on software
engineering, pages 1–11, 2018.

[47] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang
Huang, and Lu Zhang. Precise condition synthesis for program re-
pair. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), pages 416–426. IEEE, 2017.

[48] Xuezheng Xu, Yulei Sui, Hua Yan, and Jingling Xue. Vfix: value-flow-
guided precise program repair for null pointer dereferences. In 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pages 512–523. IEEE, 2019.

A Same Fixes As Developers’ Patches

In Listing 5-7, we show the generated patches that are the
same as the original developers’ fixes.

1 commit 4a9800c81d2f34afb66b4b42e0330ae8298019a2
2 diff --git a/drivers/misc/lkdtm/bugs.c b/drivers/misc/lkdtm/

bugs.c
3 @@ -327,6 +327,11 @@ void lkdtm_ARRAY_BOUNDS(void)
4 not_checked=kmalloc(sizeof(*not_checked)*2,GFP_KERNEL);
5 checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
6 + if (!not_checked || !checked) {
7 + kfree(not_checked);
8 + kfree(checked);
9 + return;

10 + }

Listing 5: Freeing the allocated memory before returning
(CVE-2022-3104).

1 commit ec4eb8a86ade4d22633e1da2a7d85a846b7d1798
2 diff --git a/drivers/net/slip/slip.c b/drivers/net/slip/slip.

c
3 @@ -469,7 +469,7 @@ static void sl_tx_timeout(struct

net_device *dev, unsigned int txqueue)
4 struct slip *sl = netdev_priv(dev);
5 spin_lock(&sl->lock);
6 if (netif_queue_stopped(dev)) {
7 - if (!netif_running(dev))
8 + if (!netif_running(dev) || !sl->tty) {
9 + spin_unlock(&sl->lock);

10 + return;
11 + }
12 tty_chars_in_buffer(sl->tty);
13 }

Listing 6: Releasing the occupied lock before returning (CVE-
2022-41858).

B Dataset Details

Defects4j is a well-known benchmark that collects multiple
reproducible bugs, supporting infrastructure with the goal of

1 commit 00b5f37189d24ac3ed46cb7f11742094778c46ce
2 diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c
3 @@ -1024,6 +1024,10 @@ bool kvm_irq_delivery_to_apic_fast(

struct kvm *kvm, struct kvm_lapic *src, struct
kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)

4 *r = -1;
5 if (irq->shorthand == APIC_DEST_SELF) {
6 + if (!src) {
7 + *r = 0;
8 + return true;
9 + }

10 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
11 return true;
12 }

Listing 7: Resetting the function argument before returning
(CVE-2022-2153).

advancing software engineering research. Here, we list the
detailed information about the dataset, which contains the
projects of Chart, Closure, Lang, Math, and Time.

Table 4: Detailed information about the collected dataset in
Defects4j.

Project Description Bug ID #NPD

Chart Free chart library for Java platform 1, 4, 14, 18, 19, 25, 26 7
Closure JavaScript checker and optimizer 2, 30, 40, 53, 96, 110 6
Lang Helper utilities for java.lang API 33, 39 2
Math Mathematics and statistics components 4, 53 2
Time Java date and time library 3 1

	Introduction
	Background
	Separation Logic
	Incorrectness Separation Logic

	Motivation Examples
	Intraprocedural State Retrogression
	Interprocedural State Propagation
	Function Argument Resetting
	Call Chain Assessment

	Conch Design
	NPD Context Graph Construction
	Path-sensitive Fixing Position Selection
	Intraprocedural State Retrogression
	If Condition Construction
	Local Resource Retrogression
	Return Statement Construction

	Interprocedural State Propagation
	Global Variable and Function Argument Resetting
	Call Chain Assessment

	Implementation
	Evaluation
	Experimental Setup
	Performance on CVE Dataset
	Performance on Benchmark Dataset

	Discussion
	Related Work
	Conclusion
	Same Fixes As Developers' Patches
	Dataset Details

