SIEVE: Secure In-Vehicle Automatic Speech Recognition Systems

Shu Wang¹, Jiahao Cao², Kun Sun¹, Qi Li²

¹ Center for Secure Information Systems, George Mason University ² Institute for Network Sciences and Cyberspace, Tsinghua University

Outline

Introduction

System Design

Experiments

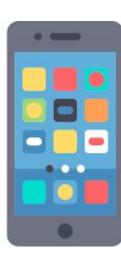
Discussion

Conclusion

Background

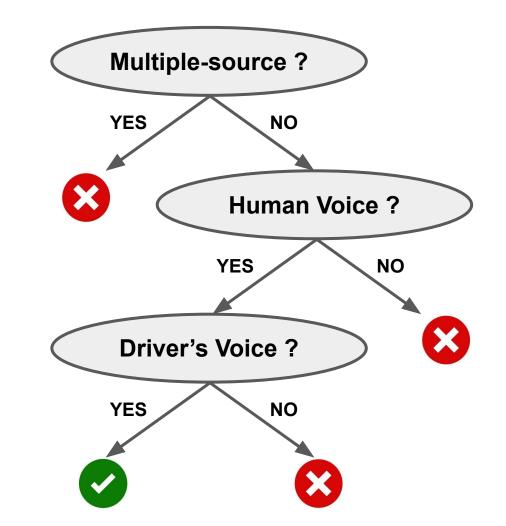
Self-driving cars are becoming an irreversible trend in our daily lives.

- > Tesla cars with Autopilot
- > Waymo's driverless cars


The latest in-vehicle voice control system provides a convenient way for drivers and passengers to interact with driverless cars.

Motivation

- Design a in-vehicle automatic speech recognition system to defeat various adversarial voice command attacks.
- ➤ Malicious commands may come from:

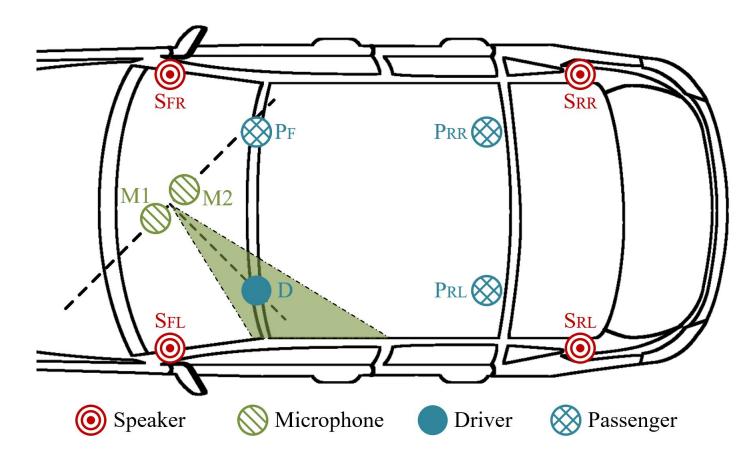


Our Work

- SIEVE: distinguish voice commands issued from a driver, a passenger, and non-human speakers.
- ➤ Three-step scheme:
 - Detecting multiple speakers
 - Identifying human voice
 - Identifying driver's voice

Introduction

System Design


Experiments

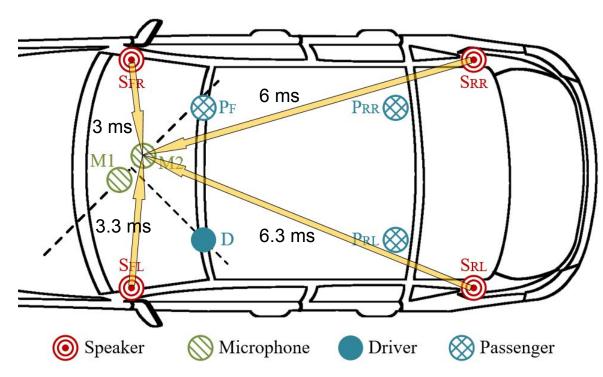
Discussion

Conclusion

SIEVE System

Dual Microphone Scheme:

Step1: Detecting Multiple Speakers


Objective:

Filter out multiple-source voice commands.

Key features:

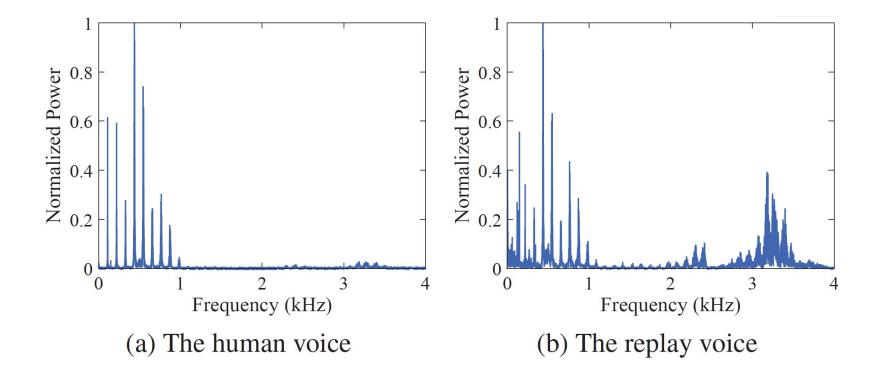
the overlap of the received signals will expand the signal correlations in the time domain.

Our methods: Autocorrelation analysis $C(s) = \sum_{k=N}^{N+L-1} g(n) \cdot g(n+s), s \in [-S, S]$

Step2: Identifying Human Voice

Objective:

Filter out non-human voice coming from car speakers and smartphone speakers in single-source commands.

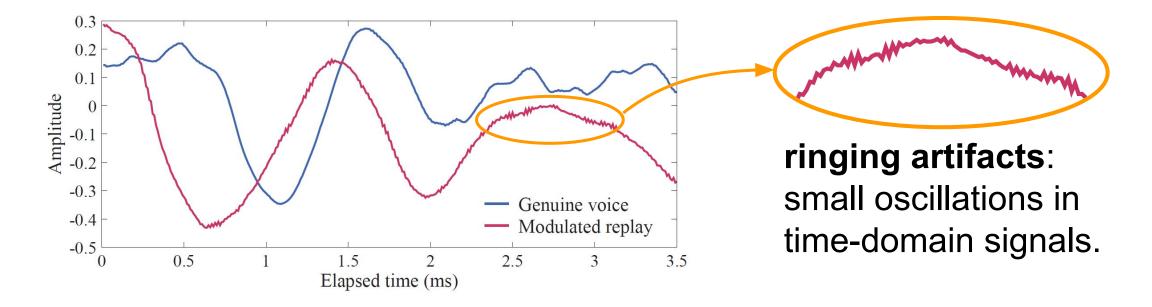

Our method:

Voice must pass two checks:

- ➤ Frequency-domain power spectrum verification.
- ➤ Time-domain local extrema cross-check.

Frequency Domain Verification

Observation: timbre difference between human voice and replay voice.



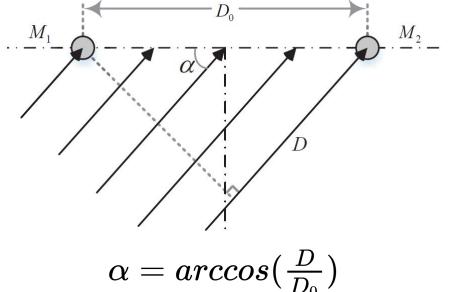
Verification: the ratio of the low frequency power to the total power.

 $R_1 = \sum_{f=85Hz}^{2kHz} A^2(f) / \sum_f A^2(f)$

Time domain Verification

Modulated replay attacks compensate the spectrum distortion.

Verification: local extrema ratio.
$$R_2 = rac{cnt_{w=3}}{N-2}$$

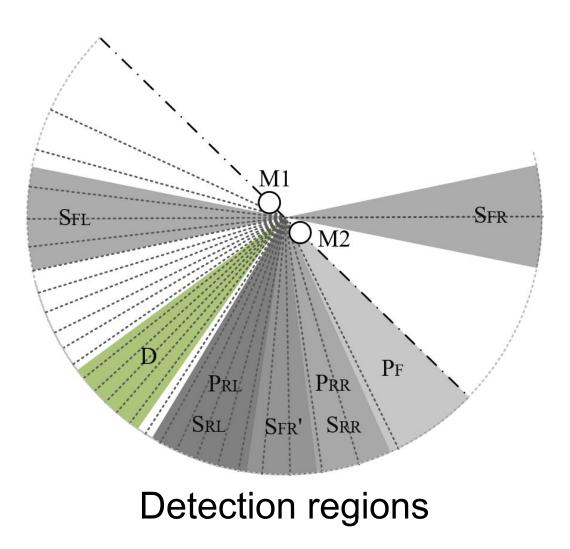

Step3: Identifying Driver's Voice

Objective:

Filter out passengers' voice commands.

Key features: Voice propagation direction.

Our method: Time Difference of Arrival (TDoA).



Step3: Identifying Driver's Voice

Propagation direction estimation

 $lpha = arccos(rac{\Delta N \cdot v_0}{D_0 \cdot f_s})$

Higher precision in the driver's direction.

Outline

Introduction

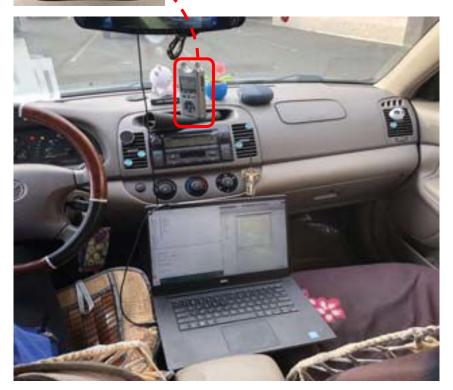
System Design

Experiments

Discussion

Conclusion

Experiments

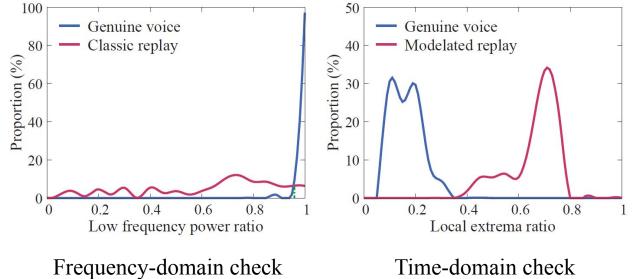

Testbed:

Sedan: Toyota Camry LE 2 Scion TCXB 6.5-inch speakers 2 Kicker 43DSC69304 D-Series 6x9-inch speakers Microphone: TASCAM DR-40 Laptop: Dell XPS15, 2.8GHz CPU

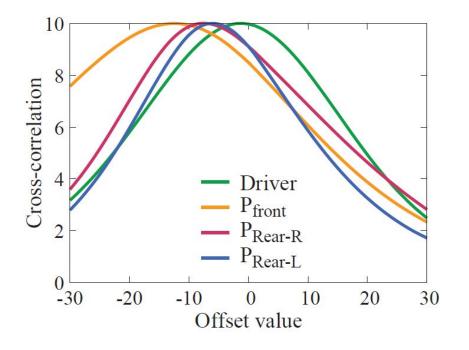
Real-World Testing: Idling: running engine @ 0 mph Local: 20 mph Highway: 50 mph

TASCAM DR-40 Dual Microphone

Vehicle Testbed


Step 1:Detecting multiple speakers

# of Speakers	Idling	Local	Highway
1	100%	83.3%	58.3%
2	66.7%	58.3%	66.7%
3	75%	66.7%	75%
4	100%	100%	100%
Total	83.3%	73.8%	71.4%


The Detection Accuracy for Different Number of Speakers

Step 2: Identifying human voice

ne Detection Accuracy of Human Voice				
Driving State	Accuracy			
Idling	97.46%			
Driving on Local Street	96.75%			
Driving on Highway	94.20%			

Step 3: Identifying driver's voice

The Peak Offsets for the Driver and Passengers

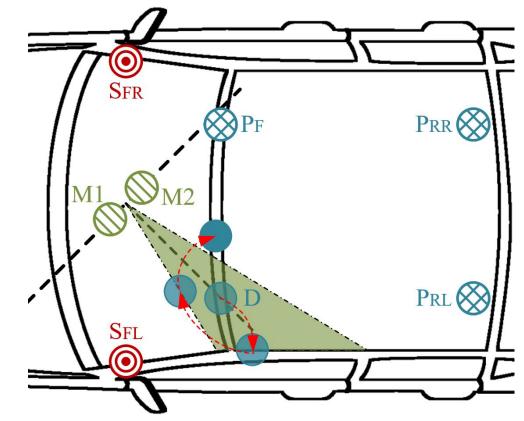
Voice Source		Idling	Local	Highway
Driver	Mean	-0.11	0.38	1.09
	Stdev	4.15	3.03	2.11
Front	Mean	-11.31	-10.99	-8.88
Passenger	Stdev	5.98	4.67	4.75
Rear Right	Mean	-8.02	-6.57	-5.31
Passenger	Stdev	4.04	3.29	5.00
Rear Left	Mean	-5.36	-5.30	-4.57
Passenger	Stdev	3.58	3.27	3.75

- ➤ Code size: 633 KB
- Well supported by the modern in-vehicle computing platforms.
- Optimized C code or assembly code may further reduce the running time.

Performance Overhead for Detection Step.

Detection Step	Running Time	Memory
Multi-speaker Detection	134 ms	111 MB
Human Voice Detection	47 ms	10 MB
Driver's Voice Identification	33 ms	23 MB
Total Overhead Costs	214 ms	144 MB

Outline


- Introduction
- System Design
- Experiments
- Discussion
- Conclusion

Discussion

Spectrum-assisted Detection.

Commands must satisfy:

- the spectrum histograms of wake-up command are similar to the previous one.
- the voice movement is within an acceptable wider range.

Discussion

- SIEVE can be extended to other vehicle models or future driverless car models.
- It is also possible to deploy more microphones (or a microphone array) in the future car designs.
- Microphones with a higher sampling rate and denoising algorithms may provide a fine-grained angle measurement.
- \succ Our techniques can be adopted in smart home systems.

Outline

- Introduction
- System Design
- Experiments
- Discussion
- Conclusion

Conclusions

- SIEVE: defeat adversarial voice command attacks on voice-controlled vehicles.
- \succ Distinguish the driver's voice with a three-step scheme.
 - Detecting multiple speakers
 - Identifying human voice
 - Identifying driver's voice
- Experimental results show our system can achieve a high detection accuracy in real-world situations.

Thank you!

Authors: Shu Wang, Jiahao Cao, Kun Sun, Qi Li

Questions? My Email: <u>swang47@gmu.edu</u>

