SIEVE: Secure In-Vehicle Automatic
Speech Recognition Systems

Shu Wang?, Jiahao Cao?, Kun Sun?, Qj Li?

! Center for Secure Information Systems, George Mason University
2 Institute for Network Sciences and Cyberspace, Tsinghua University

“\\\\\\\‘..
‘n,. °
5 9
~4 \5/ "“ \
ka9
) N Zz
-
5 g
0 4

Tsinghua University

/

UNIVERSIT

(n)
m

<




Outline

Introduction



Background

Self-driving cars are becoming an

irreversible trend in our daily lives.
> Tesla cars with Autopilot
> Waymo's driverless cars

The latest in-vehicle voice control
system provides a convenient way
for drivers and passengers to
Interact with driverless cars.




Motivation

> Design a in-vehicle automatic speech recognition system to
defeat various adversarial voice command attacks.

> Malicious commands may come from:




Our Work

> SIEVE: distinguish voice _ Muttiple-source 2
commands issued from a
driver, a passenger, and /\
non-human speakers. Quman V0|ce>
> Three-step scheme: /\

e Detecting multiple speakers <r.vers\,o.ce Q

e |dentifying human voice /\

o X

e |dentifying driver’s voice
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System Design



SIEVE System

Dual Microphone Scheme:




Stepl: Detecting Multiple Speakers

Objective:
Filter out multiple-source voice commands.

Key features:

the overlap of the received
signals will expand the signal
correlations in the time domain.

Our methods: s
i - o=/
Autocorrelation analysis |
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Step2: Identifying Human Voice

Objective:
Filter out non-human voice coming from car speakers and
smartphone speakers in single-source commands.

Our method:
Voice must pass two checks:

> Frequency-domain power spectrum verification.
> Time-domain local extrema cross-check.



Frequency Domain Verification

Observation: timbre difference between human voice and replay voice.

1 T | | 1

5 0.8 5 0.8
3 3
g g
= 06 g0
Q Q
N N
S 04 1 041 1
£ £
®) ®)
Z 02 ‘ H 1 Zo02f .
0 - A st DUV — 0
0 1 2 3 4 0 1 2 3 4
Frequency (kHz) Frequency (kHz)
(a) The human voice (b) The replay voice

Verification: the ratio of the low frequency power to the total power.
Ry =3 . A () Xp A2 (f)
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Time domain Verification

Modulated replay attacks compensate the spectrum distortion.

Amplitude
S

— Qenuine voice
— Modulated replay |
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Verification: local extrema ratio. Ry =

AT

ringing artifacts:
small oscillations in

time-domain signals.
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Step3: Identifying Driver’s Voice

Objective:
Filter out passengers’ voice commands.

Key features:
Voice propagation direction.

Our method:
Time Difference of Arrival (TDoA).

a = arccos(
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Step3: Identifying Driver’s Voice

> Propagation direction
estimation

a = arccos( %JZ';O )

> Higher precision in the
driver’s direction.

Detection regions
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Experiments
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Experiments

Testbed:

Sedan: Toyota Camry LE
2 Scion TCXB 6.5-inch speakers
2 Kicker 43DSC69304 D-Series 6x9-inch speakers

Microphone: TASCAM DR-40
Laptop: Dell XPS15, 2.8GHz CPU

Real-World Testing:

dling: running engine @ 0 mph
_ocal: 20 mph

Highway: 50 mph

o

Vehicle Testbed
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Evaluation

Step 1:Detecting multiple speakers

The Detection Accuracy for Different Number of Speakers

# of Speakers Idling Local Highway
1 100%  83.3% 58.3%
2 66.7% 58.3% 66.7%
3 75%  66.7% 75%
4 100%  100% 100%
Total 83.3% 73.8% 71.4%
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Evaluation

Step 2: Identifying human voice

The Detection Accuracy of Human Voice

Driving State Accuracy

Idling 97.46%
Driving on Local Street  96.75%
Driving on Highway 94.20%
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Frequency-domain check
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= Genuine voice

- == Modelated replay
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Time-domain check
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Evaluation

Step 3: Identifying driver’s voice
The Peak Offsets for the Driver and Passengers

= Voice Source Idling Local Highway
S 8 ] Driver Mean -0.11 0.38 1.09
p= Stdev  4.15 3.03 211
o 6 )
= Front Mean -11.31 -10.99 -8.88
; 4 — Driver Passenger Stdev  5.98 4.67 4.75
o _ P
5, = RearRight Mean -8.02 -657  -531
g Passenger  Stdev  4.04  3.29 5.00
(_)30 _210 _110 6 llo 210 30 Rear Left Mean -5.36 -5.30 -4 57

Offset value Passenger Stdev  3.58 3.27 3.75




Evaluation

> (Code size: 633 KB

> Well supported by the
modern in-vehicle
computing platforms.

> QOptimized C code or
assembly code may further
reduce the running time.

Performance Overhead for Detection Step.

Detection Step Running Time Memory
Multi-speaker Detection 134 ms 111 MB
Human Voice Detection 47 ms 10 MB

Driver’s Voice Identification 33 ms 23 MB
Total Overhead Costs 214 ms 144 MB
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Discussion
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Discussion

> Spectrum-assisted Detection.

Commands must satisfy:

e the spectrum histograms of
wake-up command are similar
to the previous one.

e the voice movement is within
an acceptable wider range.
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Discussion

>

SIEVE can be extended to other vehicle models or future
driverless car models.

It is also possible to deploy more microphones (or a
microphone array) in the future car designs.

Microphones with a higher sampling rate and denoising

algorithms may provide a fine-grained angle measurement.

Our techniques can be adopted in smart home systems.
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Conclusion
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Conclusions

> SI|IEVE: defeat adversarial voice command attacks on
voice-controlled vehicles.

> Distinguish the driver’s voice with a three-step scheme.
e Detecting multiple speakers
e Identifying human voice
e Identifying driver’s voice

> Experimental results show our system can achieve a high
detection accuracy in real-world situations.
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Thank you!

Authors:
Shu Wang, Jiahao Cao, Kun Sun, Qi Li

Questions?
My Email: swang4/7@amu.edu
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