2024 Network and Distributed System Security Symposium (NDSS)

Compensating Removed Frequency Component: Thwarting Voice Spectrum Reduction Attacks

Shu Wang¹, Kun Sun¹, Qi Li²

¹ Center for Secure Information Systems, George Mason University ² Tsinghua University

Introduction

- Automated Speech Recognition (ASR)
 - transcribe spoken language into text.
 - widely adopted in multiple areas.

Introduction

- Automated Speech Recognition (ASR)
 - transcribe spoken language into text.
 - widely adopted in multiple areas.

- ASR is vulnerable to various malicious audio attacks.
 - frequency spectrum has been manipulated to achieve different attacking goals.

Spectrum-based Attacks

• Spectrum Modification Attacks

- Attack: manipulating spectrum magnitude with a specific filter.
- Defense: utilizing time-domain features.

Spectrum-based Attacks

• Spectrum Modification Attacks

- Attack: manipulating spectrum magnitude with a specific filter.
- Defense: utilizing time-domain features.

• Spectrum Addition Attacks¹

- Attack: adding high frequency components out of voice band.
- Defense: using band-pass filters.

Spectrum-based Attacks

• Spectrum Modification Attacks

- Attack: manipulating spectrum magnitude with a specific filter.
- Defense: utilizing time-domain features.

• Spectrum Addition Attacks¹

- Attack: adding high frequency components out of voice band.
- Defense: using band-pass filters.

• Spectrum Reduction Attacks²

- Attack: removing spectrum magnitude under a threshold.
- Defense: no effective methods due to the information loss.

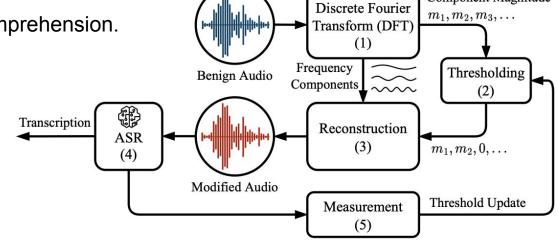
¹ NDSS 2019: Practical hidden voice attacks against speech and speaker recognition systems.

² S&P 2021: Hear "No Evil", See "Kenansville": Efficient and Transferable Black-Box Attacks on Speech Recognition and Voice Identification Systems.

Spectrum Reduction Attack

Hypothesis: some speech components are

- essential for ASR interpretation.
- non-essential for human comprehension.



Method: remove components

with low magnitude.

Impact: modified audio

- can be recognized by humans.
- cannot be interpreted by ASRs.

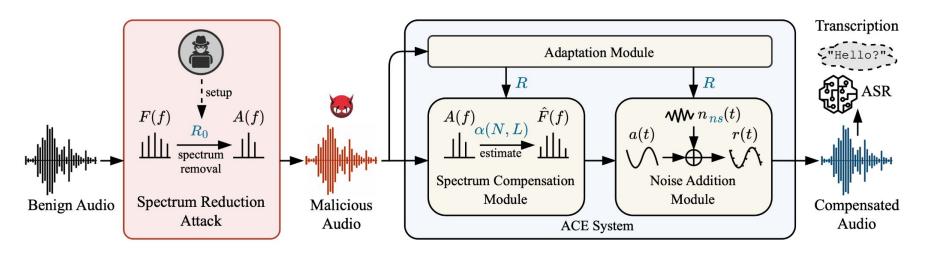
Workflow of spectrum reduction attack.

Component Magnitude

Impact of Spectrum Reduction Attack

- Content moderation systems in social media platforms
 - pre-screen and filter out harmful content (e.g., misinformation, violence).
- Malicious influencers can post and spread the videos and audios containing restricted speeches to online users without triggering any content alerts.
- The sensitive content within the audio tracks
 - cannot be noticed/detected by machine-based detection.
 - can be perceived by public audiences.

Acoustic Compensation System (ACE)



ACE consists of three modules:

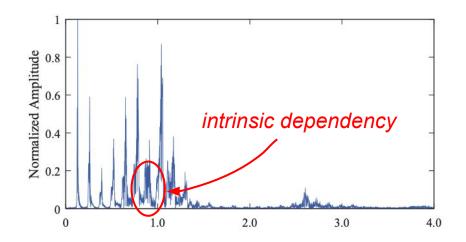
- spectrum compensation module recover missing components.
- noise addition module improve voice recognition robustness.
- adaptation module estimated attack parameters and adjust system parameters.

(1) Spectrum Compensation Module

Objective: recover the deleted components

based on the existing ones.

Observation: frequency components with similar frequencies have high correlations.

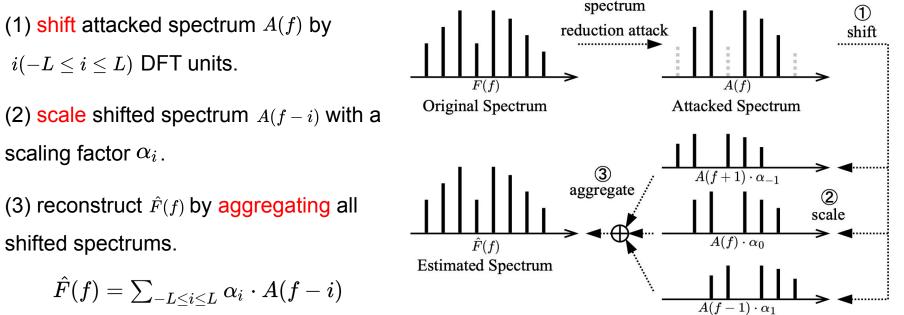


Hypothesis:

- spectrum leakage caused by signal truncation in the DFT computation.
- aliasing caused by signal undersampling (only in low-sampling-rate devices).

(1) Spectrum Compensation Module

Proposed Method:



(1) Spectrum Compensation Module

$$\hat{F}(f) = \sum_{-L \leq i \leq L} lpha_i \cdot A(f-i) \quad (0 \leq f \leq N-1)$$

Matrix form with a Hanker matrix:

$$\begin{bmatrix} A(-L) & A(-L+1) & \dots & A(L-1) & A(L) \\ A(-L+1) & A(-L+2) & \dots & A(L) & A(L+1) \\ \dots & \dots & \dots & \dots & \dots & \dots \\ A(-L+N-2) & A(-L+N-1) & \dots & A(L+N-3) & A(L+N-2) \\ A(-L+N-1) & A(-L+N) & \dots & A(L+N-2) & A(L+N-1) \end{bmatrix} \cdot \begin{bmatrix} \alpha_{-L} \\ \alpha_{-L+1} \\ \dots \\ \alpha_{L-1} \\ \alpha_{L} \end{bmatrix} = \begin{bmatrix} F(0) \\ F(1) \\ \dots \\ F(N-2) \\ F(N-1) \end{bmatrix}$$
$$H \cdot \alpha = F$$

We can get the scaling factors with closed-form linear regression:

$$\alpha = (H^T \cdot H)^{-1} \cdot H^T \cdot F$$

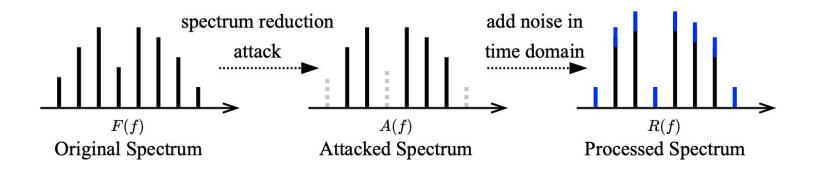
(2) Noise Addition Module

Objective: add Gaussian noise to the time-domain modified signals.

$$r(t) = a(t) + n_{ns}(t)$$

Weak noise effects:

- fill in the positions of missing weak components.
- not essentially change the distribution for strong components.



(2) Noise Addition Module

Hypothesis:

• the removed components can be seen as special adversarial noise,

$$n_{adv}(f) = -\sum_{f \in S_f} |m_f \cdot e^{j(2\pi f + \phi_f)}|$$

whose effect is to counteract the weak components in the frequency domain.

- $n_{adv}(f)$ has a similar property with Gaussian noise of a limited intensity.
 - $n_{adv}(f)$: all magnitude are weak and under a small threshold.
 - Gaussian noise: all magnitude are equal to a specific value (threshold).

(3) Adaptation Module

Problems:

- defenders do not know the spectrum reduction ratio (R) used by attackers.
- system parameters (e.g., noise level, scaling coefficients) are related to R.

Solutions:

- estimate R in the received audio to adaptively optimize the parameters of modules.
- calculate the ratio of extremely weak components among the whole spectrum (i.e., magnitude is less than 0.2% of the max magnitude).

ACE Evaluation

- Speech Datasets:
 - TIMIT: 6,300 samples; English dialects; 16 kHz.
 - VCTK: 44,000 samples; multi-accent; 48 kHz.
- ASR Models:
 - DeepSpeech: support desktop, mobile, and embedded devices.
 - CMU Sphinx: designed for low-resource platforms.
- Evaluation Metrics:
 - WER/CER (i.e., Word/Character Error Rate)
 - WER/CER Reduction Rate

ACE Evaluation

TABLE I: The performance of ACE and its each module against the word-level/phoneme-level spectrum reduction attacks (component removal ratio is 0.85). We evaluate both the WER and CER for the attacked audio and the audio with defense.

Dataset	Attack	Evaluation Metric [†]	Baseline Error [‡]	Error w/ Attack [§]	Error w/ Our Defense*			
	Granularity				Compensation	Noise Addition	ACE	
TIMIT	phoneme- level	WER CER	0.217 0.107	0.597 0.386	0.336 (-68.7%) 0.203 (-65.6%)	0.322 (-72.4%) 0.190 (-70.3%)	0.314 (-74.5%) 0.187 (-71.3%)	
	word- level	WER CER	0.217 0.107	0.794 0.562	0.593 (-34.8%) 0.396 (-36.5%)	0.570 (-38.8%) 0.372 (-41.8%)	0.568 (-39.2%) 0.370 (-42.2%)	
VCTK	phoneme- level	WER CER	0.487 0.375	0.897 0.705	0.576 (-78.3%) 0.419 (-86.7%)	0.641 (-62.4%) 0.465 (-72.7%)	0.571 (-79.5%) 0.415 (-87.9%)	
	word- level	WER CER	0.487 0.375	0.885 0.688	0.691 (-48.7%) 0.511 (-56.5%)	0.714 (-43.0%) 0.522 (-53.0%)	0.686 (-50.0%) 0.506 (-58.1%)	

[†] WER: word error rate between labels and predictions; CER: character error rate between labels and predictions.

[‡] Baseline Error indicates the average error rate when ASR infers original benign audio.

[§] Error w/ Attack indicates the average error rate under spectrum reduction attack (including the baseline error).

* The percentage in parenthesis represents the reduction ratio to the errors caused by attacks.

Adaptive Attackers

- **Q:** Could attackers use time-varying component removal ratios to circumvent the defense if they are aware of the ACE defense system?
- ACE performance is stable due to the attackers' dilemma.
 - a smaller attack unit can increase the parameter changing frequency while

decreasing the attack performance.

TABLE II: The performance of ACE system under a dynamic attack environment with different attack granularities.

attack unit (ms)	80	160	320	640	1280	2000	4000
CER w/ attack (%) CER w/ ACE (%)	16.9 11.8	19.1 13.7	18.3 14.1	23.8 19.3	22.1 17.4	24.0 19.1	23.2 18.4
error reduction (%)	82.3	64.3	55.3	34.4	41.2	36.8	38.4

Residual Error Analysis

We find ASR recognition errors come from 6 types:

T1: Fast Speed (Elision) Errors

- G: don't ask me to carry an oily rag like that.
- T: to carry an oily rag like that.

T2: Rare Word Errors

- G: iguanas and alligators are tropical reptiles.
- T: quanta analogous are tropical reptiles.

T3: Consonant Errors

G: the one meat showing .. at .. doses is pork. T: the one need showing .. and .. does is poor.

Residual Error Analysis

We find ASR recognition errors come from 6 types:

T4: Vowel Errors

G: will robin wear a .. showed pleasure. T: well robin where a .. should pleasure.

T5: Shifted Phoneme Errors

G: the tooth fairy forgot to .. tooth fell out. T: the two theories for that to .. to sell out.

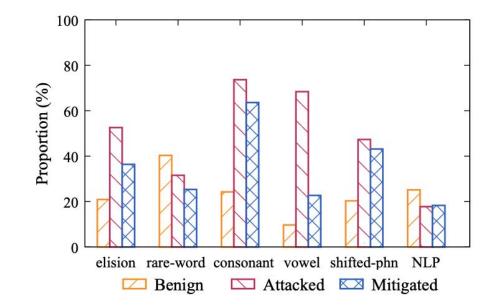
T6: NLP Inference Errors

G: she had your dark suit in greasy wash water. T: she had her dark suit and greasy wash water.

Residual Error Analysis

Benign audio

- rare word errors
- Attacked Audio
 - consonant & vowel errors
- Mitigated Audio
 - consonant errors



Reason:

- vowels are easier to recover due to higher loudness and signal strength.
- consonants are harder to recover due to light sounds and shorter durations.

Takeaways

- Mitigate spectrum reduction attacks:
 - spectrum compensation.
 - noise addition.
- ACE is stable to adaptive attacks due to attacker's dilemma.
- Residual error analysis:
 - audio attacks mainly generate phoneme errors.
 - vowels are easier to be recovered than consonants.

Thank you!

Questions and Comments?

Contact:

Email: shuvwang@gmail.com