
Security Patch Identification
on Open-Source Software
Shu Wang
Center for Secure Information System (CSIS)
George Mason University

Contents
● Motivation

● Preliminary Analysis

● Database: PatchDB

● Two Schemes:

○ Sequential-based Model

○ Graph-based Model

● Discussions and Conclusions

2

Open Source Software

● Transparency

● The power of community

● Cost-efficiency

3

Vulnerabilities have
been propagating to

downstream software.

● 97% of codebases contained
open source components.

● 81% contained at least one
vulnerability.

● 49% contained at least one
high-risk vulnerability.

—— 2022 Open Source Security and
Risk Analysis (OSSRA) Report

4

Challenge to Open Source Software

● Exploit OSS vulnerabilities reported in vulnerability databases.

● Perform “N-day” attack against unpatched software systems.

Example:

5

CVE-2021-22205

was released! Over 30,000

GitLab servers

were compromised.

Apr 2021 Nov 2021

7 months!

● Timely software patching is an effective common practice.

● Software patching challenges:

○ Increasing large number of various patches.

○ Not all security patches are reported.

● Security patch identification can prioritize patching.

6

Software Patching

Preliminary
Analysis

● Research Object

● Judging Criteria

● Observed Patterns

7

Research Object

● Patch is a set of changes

between two versions of

source code.

● In our work, patch is a simple

Git commit.

8

Judging Criteria

What is a security patch?

● CVE assignment is quite subjective and inconsistent among different CNAs.

● Not all vulnerabilities listed in NVD have PoCs or could be triggered.

● We consider a security patch if it fixes a vulnerability belonging to any CWE

types.

9

* CNAs: CVE Numbering Authorities.
* CWE: Common Weakness Enumeration. https://cwe.mitre.org/index.html

https://cwe.mitre.org/index.html

Observed Patterns

● Sanity checks

● Reinitialization

● API calls

● Patch size

10

CVE-2018-19200: fixing NULL pointer dereference.

Non-security patch: removing SIGKILL.

Security Patch
Database

● Existing datasets
○ Limited size

○ Specific repositories

○ Specific patch types

● NVD provides 4,000

security patches.

11

PatchDB

Data Augmentation

Rationale: 8% GitHub commits are security patches without a
CVE-ID, providing a source for augmenting security patch dataset.

12

Candidate Selection

Goal: to locate the most promising candidates.
Approach: for each sample in existing security patch dataset, we
search and verify its nearest neighbor from the wild (i.e., GitHub).

13

Searching Efficiency

Brute force search:

directly screening security patches from the wild.

Pseudo labeling:

locating candidates from prediction results of single machine learning model with the highest confidence.

Uncertainty-based labeling:

locating candidates from prediction results of multiple machine learning classifiers with the highest certainty (i.e.,
consensus). 14

Methods % of Security Patches

Brute Force Search 8%

Pseudo Labeling 13%

Uncertainty-Based Labeling 12%

Nearest Link Search (Ours) 29%

PatchDB
● 12K security patches, 26K non-security patches.
● 311 repositories (i.e., Linux kernel, FFmpeg, GNOME, MySQL, OpenSSL, httpd).
● Diverse patch types.

15* https://sunlab-gmu.github.io/PatchDB/

https://sunlab-gmu.github.io/PatchDB/

Sequential
Model Scheme

● RNN can deal with NLP tasks.

● Program language is also

sequential and context-sensitive.

● We use both commit message

and source code revision.

16

PatchRNN

Parsing the Commit

17

Commit Message:
Subject + Description

Code Revision

PatchRNN Architecture

18* https://shuwang127.github.io/PatchRNN-demo/

https://shuwang127.github.io/PatchRNN-demo/

Commit Message Processing

19

● Preprocessing

● Clearance

● Tokenization: split text into word tokens.

● Stemming: convert words into base form.

● Embedding + TextRNN

Code Revision Processing

20

● Tokenization: obtain code tokens by clang.

● Abstraction: normalize for each token type.

● Embedding + TwinRNN

21

Code Embedding:
● token embedding
● token type
● version type (optional)

PatchRNN Performance

● Performance:

Accuracy: 83.57%; F1-score: 0.75.

● Overhead (CPU)

Preprocessing: 4.4 sec/patch; Prediction: 1.2 sec/patch.

● Performance gets worse when only using the code revision.
○ Commit message provides most of the contributions.

○ Code revision part is not fully utilized.

22

Graph Model
Scheme

● solve the long-span dependency.

● consider more code semantics.

● embed control dependency/data

dependency/abstract syntax tree.

23

PatchSPD

GraphSPD Overview

24

● Generate PatchCPG for a target patch;

● Embed PatchCPG into a numeric format;

● Detect security patches with Graph Neural Networks.

From Patch to Graph

25

26
Post-patch Function

Pre-patch Function

Patch

Pre-patch CPG

Post-patch CPG

27

(METHOD, function)

(METHOD_RETURN, void) (BLOCK,)

(strcpy, strcpy(A, string))

(IDENTIFIER, A) (IDENTIFIER, string)

(METHOD, function)

(METHOD_RETURN, void) (BLOCK,)

(strlcpy, strlcpy(A, string, size(A)))

(IDENTIFIER, A) (IDENTIFIER, string)

(<operator>, sizeof(), sizeof(A))

(IDENTIFIER, A)

Pre-patch CPG Post-patch CPG

Mark node types (deleted/added/context)

28

(METHOD, function)

(METHOD_RETURN, void) (BLOCK,)

(strcpy, strcpy(A, string))

(IDENTIFIER, A) (IDENTIFIER, string)

(METHOD, function)

(METHOD_RETURN, void) (BLOCK,)

(strlcpy, strlcpy(A, string, size(A)))

(IDENTIFIER, A) (IDENTIFIER, string)

(<operator>, sizeof(), sizeof(A))

(IDENTIFIER, A)

Pre-patch CPG Post-patch CPG

Mark edge types (deleted/added/context)

29

(METHOD, function)

(METHOD_RETURN, void) (BLOCK,)

(strlcpy, strlcpy(A, string, size(A)))

(IDENTIFIER, A) (IDENTIFIER, string) (<operator>, sizeof(), sizeof(A))

(IDENTIFIER, A)

(strcpy, strcpy(A, string))

PatchCPG Merging Principle:
● Merge the identical nodes
● Retain the changed nodes

● Node: (nodeID, code, version)
● Edge: (startID, endID, type, version)

Code Slicing: Size Reduction of PatchCPG

30

● The graph is too large.

● Not all the contexts are useful.

● Solution: we prune the graph

by code slicing

● Only considering context nodes

directly connected to

deleted/added ones.
A mid-size PatchCPG sample (Ninf-AST) from the patch
torvalds.linux.fd6040ed57d8f200ab0cc2abf706c54995a48370

Embedding

31

● Node Embedding

○ 20-dimensional features.
○ vulnerability-relevant features.

■ code snippet metadata
■ identifier and literal features
■ control flow features
■ operator features
■ API features

● Edge Embedding

○ 5-dimensional binary vector.
○ 2 bits: pre/post-patch.
○ 3 bits: one-hot vector.

■ CDG, DDG, AST.

e.g., [1,1,0,1,0] means the edge is a
context edge of data dependency.

Graph Learning

32

Mean

Compare with TwinRNN

33

Method Dataset
General Metrics Special Metrics

Accuracy F1-score Precision F.P. Rate

TwinRNN PatchDB 69.60% 0.461 48.45% 19.67%

GraphSPD PatchDB 80.39% 0.557 77.27% 5.05%

Method #Vul_prepatch #Vul_postpatch #SecPatch T.P. Rate

CppCheck 3 1 2 0.54%

flawfinder 109 108 1 0.27%

ReDeBug 29 29 0 0.00%

YUDDY 22 16 21 5.71%

VulDeePecker 3 0 3 0.82%

GraphSPD - - 53 14.40%

Compare with Vulnerability Detection Methods

Case #1

● patches involve
complex control
flow changes.

34
CVE-2009-2768

Case #2

● pre-patch code
has misleading
secure patterns.

35

CVE-2011-3934

Case #3

36

● rule-based
methods cannot
cover all patterns.

The security patch for a double free on Linux kernel.

Case Study

● NGINX: detect 21 security patches.
●

● Xen: detect 29 security patches (Precision: 55%).

● OpenSSL: detect 45 security patches (Precision: 66%).

● ImageMagick: detect 6 security patches (Precision: 46.2%).
37

Changes w/ CVE Total Commits Valid Commits Detected SP Confirmed SP Precision

1.19.x 3 180 217 7 6 86%

1.17.x 3 134 82 4 3 75%

1.15.x 1 203 120 7 4 57%

1.13.x 1 270 157 9 8 89%

Sum. 8 787 486 27 21 78%

Discussion ● Comparison between Two

Schemes

● Future Work

38

Comparison

PatchRNN:

● Present code as sequences.

● Limited context (3+3 lines).

● Use both commit message and

source code.

● Low overhead.

GraphSPD:

● Present code as graphs.

● More context dependencies.

● Only use source code.

● High overhead.

39

Future Work

● Embedding: Transformer?

● Cross-function semantics?

● Auto-patching

● Explainable AI
The BERT model we used in binary provenance task.

40

Conclusions

● Security patch identification is critical for patch management to prevent

“N-day” attacks.

● Security patches can be distinguished by unique patterns.

● Patches can be represented as sequences or graphs.

○ Sequential model is easy to deploy but may not fully utilizing the context

embedded in source code.

○ Graph model can include more context dependencies, but with higher overhead.

41

Shu Wang
swang47@gmu.edu

42

