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Open Source Software

● Transparency

● The power of community

● Cost-efficiency
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Vulnerabilities have 
been propagating to 

downstream software.

● 97% of codebases contained 
open source components.

● 81% contained at least one 
vulnerability.

● 49% contained at least one 
high-risk vulnerability.

—— 2022 Open Source Security and
Risk Analysis (OSSRA) Report
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Challenge to Open Source Software

● Exploit OSS vulnerabilities reported in vulnerability databases.

● Perform “N-day” attack against unpatched software systems.

Example:

5

CVE-2021-22205

was released! Over 30,000

GitLab servers 

were compromised.

Apr 2021 Nov 2021

7 months!



● Timely software patching is an effective common practice.

● Software patching challenges:

○ Increasing large number of various patches.

○ Not all security patches are reported.

● Security patch identification can prioritize patching.
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Software Patching



Preliminary 
Analysis

● Research Object

● Judging Criteria

● Observed Patterns
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Research Object

● Patch is a set of changes 

between two versions of 

source code.

● In our work, patch is a simple 

Git commit.
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Judging Criteria

What is a security patch?

● CVE assignment is quite subjective and inconsistent among different CNAs.

● Not all vulnerabilities listed in NVD have PoCs or could be triggered.

● We consider a security patch if it fixes a vulnerability belonging to any CWE 

types.
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* CNAs: CVE Numbering Authorities. 
* CWE: Common Weakness Enumeration. https://cwe.mitre.org/index.html

https://cwe.mitre.org/index.html


Observed Patterns

● Sanity checks

● Reinitialization

● API calls

● Patch size
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CVE-2018-19200: fixing NULL pointer dereference.

Non-security patch: removing SIGKILL.



Security Patch 
Database

● Existing datasets
○ Limited size

○ Specific repositories

○ Specific patch types

● NVD provides 4,000 

security patches.
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PatchDB



Data Augmentation

Rationale: 8% GitHub commits are security patches without a 
CVE-ID, providing a source for augmenting security patch dataset.
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Candidate Selection

Goal: to locate the most promising candidates. 
Approach: for each sample in existing security patch dataset, we 
search and verify its nearest neighbor from the wild (i.e., GitHub).
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Searching Efficiency

Brute force search: 

directly screening security patches from the wild.

Pseudo labeling: 

locating candidates from prediction results of single machine learning model with the highest confidence.

Uncertainty-based labeling: 

locating candidates from prediction results of multiple machine learning classifiers with the highest certainty (i.e., 
consensus). 14

Methods % of Security Patches

Brute Force Search 8%

Pseudo Labeling 13%

Uncertainty-Based Labeling 12%

Nearest Link Search (Ours) 29%



PatchDB 
● 12K security patches, 26K non-security patches.
● 311 repositories (i.e.,  Linux kernel, FFmpeg, GNOME, MySQL, OpenSSL, httpd).
● Diverse patch types.

15* https://sunlab-gmu.github.io/PatchDB/

https://sunlab-gmu.github.io/PatchDB/


Sequential 
Model Scheme

● RNN can deal with NLP tasks.

● Program language is also 

sequential and context-sensitive.

● We use both commit message 

and source code revision.
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PatchRNN



Parsing the Commit
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Commit Message: 
Subject + Description

Code Revision



PatchRNN Architecture

18* https://shuwang127.github.io/PatchRNN-demo/ 

https://shuwang127.github.io/PatchRNN-demo/


Commit Message Processing
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● Preprocessing

● Clearance

● Tokenization: split text into word tokens.

● Stemming: convert words into base form.

● Embedding + TextRNN



Code Revision Processing
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● Tokenization: obtain code tokens by clang.

● Abstraction: normalize for each token type.

● Embedding + TwinRNN
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Code Embedding:
● token embedding
● token type
● version type (optional)



PatchRNN Performance

● Performance: 

Accuracy: 83.57%; F1-score: 0.75.

● Overhead (CPU)

Preprocessing: 4.4 sec/patch; Prediction: 1.2 sec/patch.

● Performance gets worse when only using the code revision.
○ Commit message provides most of the contributions.

○ Code revision part is not fully utilized.
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Graph Model 
Scheme

● solve the long-span dependency.

● consider more code semantics.

● embed control dependency/data 

dependency/abstract syntax tree.
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PatchSPD



GraphSPD Overview
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● Generate PatchCPG for a target patch;

● Embed PatchCPG into a numeric format;

● Detect security patches with Graph Neural Networks.



From Patch to Graph
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26
Post-patch Function

Pre-patch Function

Patch

Pre-patch CPG

Post-patch CPG
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(METHOD, function)

(METHOD_RETURN, void) (BLOCK,)

(strcpy, strcpy(A, string))

(IDENTIFIER, A) (IDENTIFIER, string)

(METHOD, function)

(METHOD_RETURN, void) (BLOCK,)

(strlcpy, strlcpy(A, string, size(A)))

(IDENTIFIER, A) (IDENTIFIER, string)

(<operator>, sizeof(), sizeof(A))

(IDENTIFIER, A)

Pre-patch CPG Post-patch CPG

Mark node types (deleted/added/context)
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(METHOD, function)

(METHOD_RETURN, void) (BLOCK,)

(strcpy, strcpy(A, string))

(IDENTIFIER, A) (IDENTIFIER, string)

(METHOD, function)

(METHOD_RETURN, void) (BLOCK,)

(strlcpy, strlcpy(A, string, size(A)))

(IDENTIFIER, A) (IDENTIFIER, string)

(<operator>, sizeof(), sizeof(A))

(IDENTIFIER, A)

Pre-patch CPG Post-patch CPG

Mark edge types (deleted/added/context)
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(METHOD, function)

(METHOD_RETURN, void) (BLOCK,)

(strlcpy, strlcpy(A, string, size(A)))

(IDENTIFIER, A) (IDENTIFIER, string) (<operator>, sizeof(), sizeof(A))

(IDENTIFIER, A)

(strcpy, strcpy(A, string))

PatchCPG Merging Principle:
● Merge the identical nodes
● Retain the changed nodes

● Node: (nodeID, code, version)
● Edge: (startID, endID, type, version)



Code Slicing: Size Reduction of PatchCPG
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● The graph is too large.

● Not all the contexts are useful. 

● Solution: we prune the graph 

by code slicing 

● Only considering context nodes 

directly connected to 

deleted/added ones.
A mid-size PatchCPG sample (Ninf-AST) from the patch
torvalds.linux.fd6040ed57d8f200ab0cc2abf706c54995a48370



Embedding
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● Node Embedding

○ 20-dimensional features.
○ vulnerability-relevant features.

■ code snippet metadata
■ identifier and literal features
■ control flow features
■ operator features
■ API features

● Edge Embedding

○ 5-dimensional binary vector.
○ 2 bits: pre/post-patch.
○ 3 bits: one-hot vector.

■ CDG, DDG, AST.

e.g., [1,1,0,1,0] means the edge is a 
context edge of data dependency.



Graph Learning
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Mean



Compare with TwinRNN
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Method Dataset
General Metrics Special Metrics

Accuracy F1-score Precision F.P. Rate

TwinRNN PatchDB 69.60% 0.461 48.45% 19.67%

GraphSPD PatchDB 80.39% 0.557 77.27% 5.05%

Method #Vul_prepatch #Vul_postpatch #SecPatch T.P. Rate

CppCheck 3 1 2 0.54%

flawfinder 109 108 1 0.27%

ReDeBug 29 29 0 0.00%

YUDDY 22 16 21 5.71%

VulDeePecker 3 0 3 0.82%

GraphSPD - - 53 14.40%

Compare with Vulnerability Detection Methods



Case #1

● patches involve 
complex control 
flow changes.
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CVE-2009-2768



Case #2

● pre-patch code 
has misleading 
secure patterns.
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CVE-2011-3934



Case #3
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● rule-based 
methods cannot 
cover all patterns.

The security patch for a double free on Linux kernel.



Case Study

● NGINX: detect 21 security patches.
●

● Xen: detect 29 security patches (Precision: 55%).

● OpenSSL: detect 45 security patches (Precision: 66%).

● ImageMagick: detect 6 security patches (Precision: 46.2%).
37

Changes w/ CVE Total Commits Valid Commits Detected SP Confirmed SP Precision

1.19.x 3 180 217 7 6 86%

1.17.x 3 134 82 4 3 75%

1.15.x 1 203 120 7 4 57%

1.13.x 1 270 157 9 8 89%

Sum. 8 787 486 27 21 78%



Discussion ● Comparison between Two 

Schemes

● Future Work
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Comparison

PatchRNN:

● Present code as sequences.

● Limited context (3+3 lines).

● Use both commit message and 

source code.

● Low overhead.

GraphSPD:

● Present code as graphs.

● More context dependencies.

● Only use source code.

● High overhead.
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Future Work

● Embedding: Transformer?

● Cross-function semantics?

● Auto-patching

● Explainable AI
The BERT model we used in binary provenance task.
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Conclusions

● Security patch identification is critical for patch management to prevent 

“N-day” attacks.

● Security patches can be distinguished by unique patterns.

● Patches can be represented as sequences or graphs.

○ Sequential model is easy to deploy but may not fully utilizing the context 

embedded in source code.

○ Graph model can include more context dependencies, but with higher overhead. 
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