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What is a patch?
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• A software patch is a set of changes between two versions of 
source code to improve security, resolve functionality issues, 
and add new features.

• Generated using diff command.

• On version control platform like GitHub, a commit can be 
regarded as a patch with some description comments.



Security vs. Non-Security Patch
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Security patches:
•  address specific security vulnerabilities.

Non-security patches:
• correct the software bugs.
• add/update functionality.



Why do we need identify security patch?
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•  Software maintainers are struggling with OSS patches.
• 96% of Apps contain OSS components that account for 57% of the 

code base on average[1]. 

• Applying all the new patches increases the system downtime and 
introduces extra workload.

• Postponing security patches could cause more damages.

• Examples: Equifax breach, GitLab DDoS, ...

•  Therefore, security patches should have high priority to be 
applied.
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[1] Synopsys, “Open Source Software and Risk Analysis Report,
     ”https://www.synopsys.com/content/dam/synopsys/sigassets/reports/2018-ossra.pdf, 2018.



Traditional Approaches
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•  CVE advisory monitor

• Rely on the CVE advisories to alert maintainers.

• Problem: 70% of patches are not timely disclosed in the CVE[2].

 • Text mining
• Analyze textual information to find 

security related keywords.

• Problem: changelog is not 
well-documented.

CVE-2019-10131 Off-by-One Read

[2] Li, Frank, and Vern Paxson. "A Large-Scale Empirical Study of Security Patches." 
      Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2017.



Traditional Approaches (Cont.)
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•  Using human defined features.

• Manually define a set of features on code metrics.

• Problem

● Require lots of expertise.

● Still incur high true positive/negative rate.

 



Motivation
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•  Source code provides rich syntactic and semantic information.

•  Neural networks have shown effectiveness in processing NLP.

• Program language is also sequential and context-sensitive.

 



Our Work

To effectively identify security patches, we propose a deep 
learning based system called PatchRNN that utilizes both two 
parts of a commit:

• Commit message

• Source code difference
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PatchRNN Overview
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Parsing the Commit
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Commit Message: Subject + Description

Source Code Difference



Feature Extraction from Commit Message
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• Pre-processing: case lowering, data cleaning, 

and stopword removal.

• Tokenization and stemming.

• Transforming tokens into word embeddings 

via word2vec.

 



Feature Extraction from Commit Message (Cont.)
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•  Then, we develop a TextRNN model to generate the message 

vector.

 



Feature Extraction from Source Code Difference
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•  Retrieve the vulnerable and unpatched code.

•  Perform the abstraction respectively.

 



Feature Extraction from Source Code Diff (Cont.)
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•  Normalize to a fixed length respectively.

•  Convert to two vectors via word2vec.

•  Input in a twin RNN-based model and get the code vector. 



Model Learning
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•  Finally, we concatenate the message and code vectors and then 

feed them to the prediction model.

TextRNN Model Twin RNN Model

Fully Connected Network

Prediction Result

Code VectorMessage Vector



Evaluation
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• Dataset: 

• PatchDB[3]: 12,476 security patches and 25,565 non-security collected from 

NVD and popular GitHub projects).

• Randomly choose 80% for training and remaining 20% for testing.

• Implementation: 3K LoC in Python 3 and Pytorch 1.6.

• Environment: Ubuntu 20.04.1 LTS, Intel Xeon Gold 5122, 3.60-GHz CPU 

with 64-GB RAM and 2 NVIDIA RTX 2080 Ti GPUs of 11 GB memory.

 

[3] Wang, Xinda, Shu Wang, Pengbin Feng, Kun Sun, and Sushil Jajodia. "PatchDB: A Large-Scale Security Patch Dataset."
      In 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 149-160. IEEE, 2021.



Evaluation (Cont.)
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• Performance: 83.57% accuracy with 0.75 F1 score.

• Overhead

• Preprocessing: 4.4 sec/patch.

• Prediction: 1.2 sec/patch.

 



Case Study on Nginx
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Official Doc. Ground Truth Inference Results

Changes with Security Security Non-Sec. T.P. F.P.

1.19.1 0 8 11 4 0

1.19.2 0 8 7 3 0

1.19.3 0 7 12 3 0

Sum. 0 23 30 10 0

We identifies 10 security patches that are silently released by NGINX with 

no false positives.



Conclusion
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• We initiate the study of using deep learning based approach to identify 

security patch.

• The evaluation on large-scale real-world dataset and Nginx shows its 

effectiveness with low false positives.
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Thank you!

Q & A


