
PatchRNN: A Deep Learning-Based System
for Security Patch Identification

Xinda Wang∗, Shu Wang∗, Pengbin Feng∗, Kun Sun∗, Sushil Jajodia∗,

Sanae Benchaaboun†, and Frank Geck†

∗Center for Secure Information Systems, George Mason University
†CSIA Division, C5ISR Center, Space and Terrestrial Communications Directorate,

U.S. Army Combat Capabilities Development Command (DEVCOM)

What is a patch?

2

• A software patch is a set of changes between two versions of
source code to improve security, resolve functionality issues,
and add new features.

• Generated using diff command.

• On version control platform like GitHub, a commit can be
regarded as a patch with some description comments.

Security vs. Non-Security Patch

3

Security patches:
• address specific security vulnerabilities.

Non-security patches:
• correct the software bugs.
• add/update functionality.

Why do we need identify security patch?

4

• Software maintainers are struggling with OSS patches.
• 96% of Apps contain OSS components that account for 57% of the

code base on average[1].

• Applying all the new patches increases the system downtime and
introduces extra workload.

• Postponing security patches could cause more damages.

• Examples: Equifax breach, GitLab DDoS, ...

• Therefore, security patches should have high priority to be
applied.

4
[1] Synopsys, “Open Source Software and Risk Analysis Report,
 ”https://www.synopsys.com/content/dam/synopsys/sigassets/reports/2018-ossra.pdf, 2018.

Traditional Approaches

5

• CVE advisory monitor

• Rely on the CVE advisories to alert maintainers.

• Problem: 70% of patches are not timely disclosed in the CVE[2].

 • Text mining
• Analyze textual information to find

security related keywords.

• Problem: changelog is not
well-documented.

CVE-2019-10131 Off-by-One Read

[2] Li, Frank, and Vern Paxson. "A Large-Scale Empirical Study of Security Patches."
 Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2017.

Traditional Approaches (Cont.)

6

• Using human defined features.

• Manually define a set of features on code metrics.

• Problem

● Require lots of expertise.

● Still incur high true positive/negative rate.

Motivation

7

• Source code provides rich syntactic and semantic information.

• Neural networks have shown effectiveness in processing NLP.

• Program language is also sequential and context-sensitive.

Our Work

To effectively identify security patches, we propose a deep
learning based system called PatchRNN that utilizes both two
parts of a commit:

• Commit message

• Source code difference

8

PatchRNN Overview

9

Parsing the Commit

10

Commit Message: Subject + Description

Source Code Difference

Feature Extraction from Commit Message

11

• Pre-processing: case lowering, data cleaning,

and stopword removal.

• Tokenization and stemming.

• Transforming tokens into word embeddings

via word2vec.

Feature Extraction from Commit Message (Cont.)

12

• Then, we develop a TextRNN model to generate the message

vector.

Feature Extraction from Source Code Difference

13

• Retrieve the vulnerable and unpatched code.

• Perform the abstraction respectively.

Feature Extraction from Source Code Diff (Cont.)

14

• Normalize to a fixed length respectively.

• Convert to two vectors via word2vec.

• Input in a twin RNN-based model and get the code vector.

Model Learning

15

• Finally, we concatenate the message and code vectors and then

feed them to the prediction model.

TextRNN Model Twin RNN Model

Fully Connected Network

Prediction Result

Code VectorMessage Vector

Evaluation

4

• Dataset:

• PatchDB[3]: 12,476 security patches and 25,565 non-security collected from

NVD and popular GitHub projects).

• Randomly choose 80% for training and remaining 20% for testing.

• Implementation: 3K LoC in Python 3 and Pytorch 1.6.

• Environment: Ubuntu 20.04.1 LTS, Intel Xeon Gold 5122, 3.60-GHz CPU

with 64-GB RAM and 2 NVIDIA RTX 2080 Ti GPUs of 11 GB memory.

[3] Wang, Xinda, Shu Wang, Pengbin Feng, Kun Sun, and Sushil Jajodia. "PatchDB: A Large-Scale Security Patch Dataset."
 In 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 149-160. IEEE, 2021.

Evaluation (Cont.)

4

• Performance: 83.57% accuracy with 0.75 F1 score.

• Overhead

• Preprocessing: 4.4 sec/patch.

• Prediction: 1.2 sec/patch.

Case Study on Nginx

4

Official Doc. Ground Truth Inference Results

Changes with Security Security Non-Sec. T.P. F.P.

1.19.1 0 8 11 4 0

1.19.2 0 8 7 3 0

1.19.3 0 7 12 3 0

Sum. 0 23 30 10 0

We identifies 10 security patches that are silently released by NGINX with

no false positives.

Conclusion

4

• We initiate the study of using deep learning based approach to identify

security patch.

• The evaluation on large-scale real-world dataset and Nginx shows its

effectiveness with low false positives.

20

Thank you!

Q & A

