
Auter: Automatically Tuning Multi-layer Network Buffers
in Long-Distance Shadowsocks Networks

Xu He∗, Jiahao Cao†, Shu Wang∗, Kun Sun∗, Lisong Xu§, and Qi Li‡
∗Center for Secure Information Systems, George Mason University, VA, USA

†Department of Computer Science and Technology, Tsinghua University, Beijing, China
‡Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China

§School of Computing, University of Nebraska-Lincoln, NE, USA
{xhe6, swang47, ksun3}@gmu.edu, caojh15@gmail.com, xu@cse.unl.edu, qli01@tsinghua.edu.cn

Abstract—To bypass network censorship, Shadowsocks is often
deployed on long-distance transnational networks; however, such
proxy networks are usually plagued by high latency, high packet
loss rate, and unstable bandwidth. Most existing tuning solutions
rely on hand-tuned heuristics, which cannot work well in the
volatile Shadowsocks networks due to the labor intensive and
time-consuming properties. In this paper, we propose Auter,
which automatically tunes multi-layer buffer parameters with
reinforcement learning (RL) to improve the performance of Shad-
owsocks in long-distance networks. The key insight behind Auter
is that different network environments require different sizes of
buffers to achieve sufficiently good performance. Hence, Auter
continuously learns a tuning policy from volatile network states
and dynamically alter sizes of multi-buffers for high network
performance. We prototype Auter and evaluate its effectiveness
under various real networks. Our experimental results show that
Auter can effectively improve network performance, up to 40.5%
throughput increase in real networks. Besides, we demonstrate
that Auter outperforms all the existing tuning schemes.

I. INTRODUCTION

Shadowsocks [1], [2] is a proxy application that has been
widely deployed across regions or countries to circumvent
Internet censorship. However, due to volatile link status and
censorship, such long-distance proxy networks are usually
plagued by high latency, high packet loss rate, and unstable
bandwidth. For better user experience, it is critical to improve
the tunneling connections between the Shadowsocks client and
the Shadowsocks server. As network environments cannot be
easily controlled, network engineers typically tune a series
of network parameters in the TCP/IP protocol stack of end
hosts to optimize tunneling connections. For example, the
Shadowsocks provider suggests several specific configurations
of network-related parameters to improve the tunneling perfor-
mance, including enhanced congestion control algorithms such
as BBR [3], amplified buffer sizes, and a series of enabled
tuning mechanism parameters [4].

However, manually tuning network-related parameters falls
into two main limitations. First, it relies on hand-tuned heuris-
tics, where engineers fine tune and summarize the parameter
configurations for specific network scenarios based on their
domain knowledge. This manual tuning process is labor-
intensive, time-consuming, and cost-expensive. Second, the
one-shot static parameter setting is destined for long-term
usage in relatively stable network environments, which does
not work well in volatile network environments with varying

latency and unstable bandwidth. However, such environments
are common in the long-distance Shadowsocks networks.
Particularly, our experiments find that even the most aggressive
static tuning scheme such as maximizing the buffer size cannot
consistently maintain high performance over a long term.

There are several efforts to overcome the limitations of man-
ually tuning network-related parameters. An adaptive tuning
scheme uses a feedback control mechanism to adaptively tune
the socket buffer using a rule-based model [5]. However, it
only works on a single parameter. Another method [6] exploits
the evolutionary algorithm to select optimal value for multiple
parameters. However, it is still a static tuning method, which
may not adapt well to the quickly changing network envi-
ronments. Recently, deep learning and reinforcement learning
(RL) techniques have been adopted in congestion control, due
to their flexibility and better performance [7], [8]. However,
those solutions mainly focus on tuning a single parameter, and
they cannot simultaneously tune multiple network parameters,
which are critical to improve the performance of Shadowsocks
running in the volatile long-distance networks. Therefore,
Shadowsocks providers still rely on empirical results via
manual tuning to configure those network parameters.

In this paper, we propose an RL-based tuning system called
Auter that automatically and dynamically tunes multi-layer
network buffers to improve the performance of Shadowsocks.
Auter consists of three components including network percep-
tion, decision making, and policy enforcement. The network
perception component collects a series of information about
traffic performance states and transforms them as the inputs to
the decision-making agent. The agent calculates the rewards
based on the performance states and periodically generates
the tuning action policies. The policy enforcement component
maps the action policies into buffer size values and hence
updates the parameters.

We solve two challenges when applying the RL model into
the network parameter tuning task. The first challenge is to
find out what network parameters are suitable for continuous
tuning at runtime. Our preliminary experiments show that
not all network parameters can be adjusted continuously.
Actually, changing some parameters (e.g., the Generic Receive
Offloading (GRO)) request reboot the Network Interface Card
(NIC) to enable the new configuration values [9]. Via our
analysis and experimental verification, we identify three types

978-1-6654-5822-1/22/$31.00 ©2022 IEEE 1689

IE
EE

 IN
FO

C
O

M
 2

02
2

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

8-
1-

66
54

-5
82

2-
1/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
48

88
0.

20
22

.9
79

68
82

Authorized licensed use limited to: George Mason University. Downloaded on June 25,2022 at 18:12:50 UTC from IEEE Xplore. Restrictions apply.

of network buffers, i.e., ring buffer, socket buffer, and TCP
socket buffer, which support runtime tuning and thus could
be accommodated in the RL model for dynamic adjustment.
Particularly, we discover that the driver-level ring buffer could
be dynamically tuned along with the socket buffer and TCP
socket buffer to improve the network performance.

The second challenge is on how to decide suitable range and
intervals for tuning network parameters. We find that different
buffers have different adjustment range. For instance, the
adjustable range of the ring buffer is from 64 to 4096 packets,
while the range of the socket buffer is from 5120 to 67108864
bytes. Meanwhile, different parameters have specific relation-
ships and constraints. For instance, both the socket buffer and
the TCP socket buffer have two adjustable related parameters,
i.e., the default and maximum values. However, the default
value must be kept less than the maximum value during the
tuning process. Besides, we find the ring buffer must maintain
a longer tuning interval than the other two buffers. Through
studying the network stack implementation and conducting
extensive experiments, we determine the adjustable tuning
range and interval for each buffer parameter.

We prototype Auter and conduct extensive experiments
to evaluate its effectiveness on improving the Shadowsocks
performance. We first test the adaptability of Auter under
different network scenarios with various latency, bandwidth,
packet loss, and flow size. The results show that Auter is robust
for various network scenarios, especially for the high latency
network. Auter can increase 4.67x throughput in the 40ms
latency simulated environment. We also deploy Shadowsocks
with Auter on the Azure and Tencent cloud platforms to eval-
uate its effectiveness in real networks. Auter can achieve up
to 40.5% throughput increase and 20.33% throughput increase
on average across three regions. We also compare Auter with
BBR and other static tuning schemes, and the results show that
Auter always outperforms the existing optimization schemes.

In summary, our paper makes the following contributions.
• We propose an automatic and dynamic network buffer tun-

ing system based on reinforcement learning to improve the
Shadowsocks performance. It covers multi-layer buffers and
can dynamically adapt to complex long-distance networks.

• We design differentiated buffer tuning mechanisms, which
tunes ring buffer, socket buffer, and TCP socket buffer with
different scale and intervals.

• We prototype a demo of Auter and verify its effectiveness
under various network conditions and real networks.

II. BUFFER IMPACTS FOR SHADOWSOCKS

In this section, we first introduce the communication process
of Shadowsocks. Then we present three buffers for data trans-
fers between network applications and NICs. Next, we show
how their buffer size impacts the performance of Shadowsocks
under different network environments.

A. Shadowsocks

Shadowsocks is a proxy application based on Socks5
protocol [10]. It consists of two components: SS local and

Local	host FirewallSS	Local SS	Server Web	resource

encryption

decryption

request

responseencryption

Fig. 1. The communication process of Shadowsocks.

SS Server. The communication process of Shadowsocks is
shown in Figure 1. Typically, the SS Local is the client de-
ploying at the local host. It interacts with the user applications
based on Socks5 protocol and then encrypts the traffic and
forwards them to the SS Server. The SS server is deployed
on the other side behind the firewall. When receiving the
encrypted traffic, SS Server decrypts it and forwards them
to the target servers. After getting the responses, SS Server
encrypts the traffic again and sends it back to the SS Local.
Since Shadowsocks is mainly used to bypass censorship, it is
typically deployed across regions and even across countries,
facing complex and volatile network environment.

B. Buffers of Network Layers

Socket Buffers. Socket sending and receiving buffers lie be-
tween network applications and TCP/IP stack. Intuitively, the
larger the socket buffer size, the greater the throughput. How-
ever, larger socket buffers require larger memory allocation.
When there are hundreds of connections, large socket memory
may severely limit the network performance, especially for ap-
plications with high concurrency requirements [11]. Hence, a
larger socket buffer does not always mean better performance.
It should be dynamically adjusted according to applications,
memory limitations, and network environments.
TCP Socket Buffers. Besides general socket buffers, TCP
connections have their dedicated TCP socket buffers with a
set of parameters [min, default, max]. The impact on network
performance of the TCP socket buffer is similar to that
of the general socket buffer. Nevertheless, the TCP socket
buffer parameter has a higher priority than the socket buffer
parameter for TCP connections. Moreover, the receiving TCP
socket buffer is automatically adjusted by kernels [12] while
the sending TCP socket buffer is tuned manually.
Ring Buffers. The ring buffer is the last buffer that data go
through before they enter NICs and the first buffer that data
go through after they come out from NICs. Small ring buffers
can cause the starvation phenomenon, which occurs when the
NIC driver wakes to pull packets off for transmission. Besides,
when the ring buffer is empty, a transmission opportunity is
missed, which reduces the throughput of the system [13].
Network operators may increase the size of the receiving
ring buffer to reduce the starvation risk and ensure the high
throughput. However, it requires more memory allocation
and cause high queuing latency for packets. In some cases,
oversized buffers may also cause low throughput (See Table I).
Therefore, it is crucial to choose a proper size for the ring
buffer according to different network environments.

2

1690
Authorized licensed use limited to: George Mason University. Downloaded on June 25,2022 at 18:12:50 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE SHADOWSOCKS PERFORMANCE COMPARISON OF HAND-TUNED

SCHEMES WITHIN TWO REGIONS

Location Setting Ring TCP socket Socket Throughput

ES&WE

default 256 65,536 212,992 161.32 Mbps
tune-1 512 1,048,576 4,194,304 169.73 Mbps (+5.2%)*

tune-2 256 87,380 67,108,864 217 Mbps (+34.5%)
max 4096 67,108,864 67,108,864 172 Mbps (+6.7%)

ES&EA

default 256 65,536 212,992 116.4 Kbps
tune-1 512 1,048,576 4,194,304 146.92 Kbps (+26.2%)
tune-2 256 87,380 67,108,864 107.5 Kbps (-7.6%)
max 4096 67,108,864 67,108,864 127.4 Kbps (+9.5%)

* Compared to the default setting

C. Impact of Buffer Size on Shadowsocks

To show that different buffer sizes take different impacts
on Shadowsocks under different network environments, we
deployed two Shadowsocks servers in two regions, i.e., the
East Asia (EA) and the West (WE). The Shadowsocks client
is in the East (ES). It is the typical deployment scheme
in practice. We test four groups of hand-tuned buffer pa-
rameters in the network environment of the two regions.
They are from the default buffer parameters in Ubuntu 18.04
(default), the third-party Shadowsocks deployment opti-
mization scheme [14] (tune-1), the parameters suggested by
the ESnet website from the U.S. Department of Energy [15]
(tune-2), and the max buffer scheme maintaining maximum
values (max), respectively. The results are shown in Table I.

As we can see, all the three tuning schemes increase buffer
sizes compared to the default settings. However, there is
a significant difference on performance gains. The tune-1
scheme performs the best when the server is located in EA
and the clients are located in ES. The throughput significantly
improves by 26.22% compared to the default scheme. When
the server is located in WE, the throughput for the tune-1
scheme only improves by 5.21%. The performance of the tune-
2 scheme on the two servers is just the opposite. It works the
best in the WE. The throughput increases by 34.52% compared
to the default scheme. However, it significantly decreases the
throughput in EA compared to the default scheme. The max
scheme is neither the best in both servers.

Based on the above results, we have the two observations:
• Different network environments (e.g., distance, routing,

and censorship) require different buffer parameters for
optimizing Shadowsocks.

• Enlarging the buffer size to the maximum values cannot
guarantee the best performance for Shadowsocks.

Hence, buffer parameters need to be dynamically tuned based
on different network environments to achieve the best perfor-
mance of Shadowsocks.

III. AUTER DESIGN

Auter models multi-level buffer tuning as a decision-making
procedure with an RL model. Figure 2 shows the system
architecture, which deploys an RL agent in the user-space
and interacts with the kernel and NIC driver via a series
of system tools and APIs. The RL agent consists of three

components: network perception, decision making, and policy
enforcement. The network perception component collects a
series of information about network performance states and
transforms them as inputs to the decision-making component.
The decision-making component calculates the rewards based
on the performance states and generates the tuning actions
periodically. Finally, the policy enforcement component maps
the action policies into new buffer size values and tunes the
configurations in the kernel and NIC driver.

Fig. 2. The architecture of the Auter system.

A. Network Perception

The network perception component constructs a state vector
Si in the i-th RL iteration, which will be fed into the decision
making component. It consists of the buffer state Sbi and the
current network performance state Spi . As we mentioned in
Section II, Shadowsocks’ network performance is significantly
affected by ring buffer size lri , socket buffer size lsi , and
TCP socket buffer size lti . Meanwhile, the current network
performance can be reflected by throughput θi, latency βi,
and packet loss `i. Hence, we have the following definitions:{

Spi = [θi, βi, `i]

Sbi = [lri , l
s
i , l

t
i]
. (1)

Due to network jitters and the burst feature of network
flows, throughput, latency, and packet loss may vary signif-
icantly in a short time [16]. To avoid overreacting to network
environments when adjusting parameters, we obtain θi, βi,
and `i using their average values for each flow. As indicated
in [17], the average flow duration of TCP flows is 57.32
seconds. Hence, we calculate the average value per minute.
The throughput θi is calculated as the total traffic amount
sent in the current flow divided by its duration. The latency
βi is calculated as the average time difference between send-
ing packets and receiving the corresponding acknowledgment
(ACK) packets. The packet loss rate `i is calculated as the
proportion of packets that need to be resent to the total packets
in a TCP connection.

B. Decision Making

After obtaining the state information by the network percep-
tion component, the next step is to make a decision on tuning
these three buffer parameters. Our model is trained using the
popular DQN algorithm [18]. It has simple structure and rapid
response, which is suitable to be deployed on a network server

3

1691
Authorized licensed use limited to: George Mason University. Downloaded on June 25,2022 at 18:12:50 UTC from IEEE Xplore. Restrictions apply.

with limited resources and makes tuning decisions quickly.
The DQN agent includes two neural networks: the evaluation
network and the target network. In the i-th iteration, the
policy function π(·) generates the action policy ai while the
target network updates the Q function Q(·) that approximates
accumulative reward function Ri, in which the basic unit is
the reward function ri. In each iteration, the reward function
ri is calculated according to the current state information and
the optimization objective. Thus, ri continuously accumulates
during the iteration process to maximize the accumulative
reward function Q(·).

Auter aims to improve the throughput and also takes into
account the latency and the packet loss rate. The reward func-
tion thus should include all these three performance metrics,
which is designed as follows:

ri = xθ · rθi + xβ · rβi + x` · r`i . (2)

Here, rθi , rβi , and r`i are throughput reward, latency reward,
and packet loss reward, respectively. xθ, xβ and x` are their
corresponding weights. Note that xθ > 0, xβ < 0, and x` <
0. This is because latency and packet loss actually are the
penalty for the system compared to throughput. As throughput,
latency, and packet loss have different orders of magnitude, we
normalize raw values to obtain rθi , rβi , and r`i as follows:

rθi =
θi − θmin

θmax − θmin
rβi =

βi − βmin
βmax − βmin

r`i =
`i − `min

`max − `min

, (3)

where θmin and θmax are minimum and maximum values
of the sampled throughput. However, due to the volatility of
Shadowsocks networks, we need to eliminate outliers based
on the three-sigma rule [19] before selecting θmin and θmax.
βmin, βmax, `min, and `max are calculated in the same way.

By adjusting xθ, xβ , and x` in Equation 2, the decision
making component can set different performance optimization
goals for different scenarios. For example, a higher throughput
is crucial for file transfer protocol (FTP) service; hence we
can raise xθ in that case. However, low latency is required for
interactive services such as video games; hence we can further
decrease the value of xβ . As the performance expectation of
Shadowsocks mainly focuses on throughput improvement, we
set the requirement: xθ > max

{∣∣xβ∣∣ , ∣∣x`∣∣}.

C. Policy Enforcement

Policy enforcement tunes the buffer parameters according
to the policies generated by the decision making component.
Considering the differences between the buffers and the po-
tential side effects of buffer tuning, we design a differentiated
tuning mechanism that sets the different scale, range, and time
interval for different buffers.

1) Tuning Range and Scale: In each iteration, Auter tunes
three buffers according to the action policy provided by
the decision making component. However, these three buffer
parameters can not be tuned at will since they have different
tuning range and scale. We find that the adjustable range is
limited by the operating system and hardware. For example,
in our test machine (Ubuntu 18.04, 16GB RAM, e1000e
NIC driver), the adjustable range of ring buffer size is from
64 to 4,096 packets. While the range of the TCP socket
buffer is from 512 to 67,108,864 bytes, which is much larger
than that of the ring buffer. Moreover, the relationship of
the parameters between sender and receiver gives constraints.
From our experiments, we find that the current connection
may be interrupted if the sender’s TCP sending buffer and the
receiver’s TCP receiving buffer meet a certain relationship.
For example, when the receiver’s TCP buffer is 16K, the
sender’s TCP buffer should be larger than 28K; otherwise, the
connection would be cut off. Finally, frequent tuning can also
interrupt the current connection for a period of time, especially
for the ring buffers. Thus, we set different tuning range and
scale for each buffer parameter and update them as follows:

bi = bi−1 + α× ai,
s.t. bi, bi−1 ∈ [bmin, bmax],

(4)

where bi refers to the value of buffer size that is tuned at
the i-th iteration. bi is updated based on the last value bi−1

and the agent’s output ai. α is the scale factor, which is
distinct for each buffer. We test several options for each scale
factor and select the settings that can exhibit high performance
throughout in our evaluations.

In addition, there are some special considerations for TCP
socket buffer and socket buffer. As introduced in Section II,
Linux kernels maintain default and maximum values for socket
buffers, and minimum, default, and maximum values for
TCP socket buffers. We dynamically tune their default and
maximum values. Tuning the default value would decide the
actual socket buffer size, while tuning the maximum value can
avoid conflicts with the increased default value.

2) Tuning Interval: Besides the tuning range and scale, the
tuning interval, which means how often to tune, should also
be customized for each buffer. In order to meet the needs
of timely response, tuning intervals in existing studies are
mainly in millisecond-level [16], [20], [21], [8]. However,
a tiny time interval is unsuitable for tuning buffers. First,
frequent adjustments on ring buffers may cause side effects
on the traffic. our test finds that a single tuning of ring
buffer would interrupt a connection for about 2.1 seconds.
Moreover, if we continuously and frequently tune the ring
buffer, the connection would be unstable or even completely
interrupted. Therefore, ring buffer size is not a parameter
suitable for frequent tuning. Second, real-time adjustment at
a millisecond or even sub-millisecond interval for heavy-
load networks may generate high overhead and require very
complex architecture [8]. Tuning parameters at a relatively
long interval would be better for our system.

4

1692
Authorized licensed use limited to: George Mason University. Downloaded on June 25,2022 at 18:12:50 UTC from IEEE Xplore. Restrictions apply.

Thus, we update buffer parameters at the flow level, which
means at least one flow is completed between two adjustments.
In each iteration, the perception module collects network state
from at least one unbroken flow, which can help us collect
enough data to eliminate outliers. The tuning interval depends
on the average duration and density of TCP connections.
In our evaluation, the range of time interval is from 3s to
10s. Besides, considering the possible side effects of frequent
tuning for ring buffers, we further slow down its tuning cycle.

Algorithm 1 shows the differentiated buffer tuning mech-
anism for the three buffers, which explains how the policy
enforcement module tunes the three buffers based on the action
policy ai = [ari , a

s
i , a

t
i] and collects the new state vector

Si = [Spi , S
b
i]. The algorithm runs in a big loop from Step

1 to 17. In each round, it calculates the new buffer size and
determines whether the size exceeds the adjustable range (Step
2-6), and then updates the buffer size. Such tuning is suitable
for the socket buffer and TCP socket buffer. For the ring buffer,
Steps 9-12 calculate the number of requests for the RL model
to increase (cntr+) or decrease (cntr−) the ring buffer size.
Meanwhile, we monitor the number of running connections
(nconn) in the system by Step 13. Ring buffer tuning meets
two prerequisites: (1) the continuous requests to adjust ring
buffer exceeds n times; (2) the number of existing connections
is less than m, which are determined in step 14-15. Finally,
we recollect the state vector Si = [Spi , S

b
i] with Step 16-17 as

the new input of the decision-making module.

Algorithm 1 Differentiated Buffer Tuning Mechanism
Input: ai = [ari , a

s
i , a

t
i], the policy generated by the RL agent

Output: Si = [Spi , S
b
i], the collected state information

1: for i← 1 to T do
2: tmpsi ← bsi−1 + αs × asi
3: if tmpsi ∈ [bsmin, b

s
max] then

4: bsi ← tmpsi
5: else
6: bsi ← bsi−1

7: · · · / ∗ Similar work for bti ∗ /
8: / ∗ br monotonically increase or decrease ∗ /
9: if ari > 0 then

10: cntr+ ← cntr+ + 1 and cntr− ← 0
11: else if ari < 0 then
12: cntr− ← cntr− + 1 and cntr+ ← 0

13: nconn ← the number of running connections
14: if (cntr+ > n or cntr− > n) and nconn ≤ m then
15: bri ← tmpri
16: Sbi ← [bri , b

s
i , b

t
i]

17: Spi ← [θi, βi, `i]
18: output Si ← [spi , S

b
i]

IV. SYSTEM IMPLEMENTATION

Auter system is implemented with Python 3.7, Tensorflow,
and the python package stable-baselines [22]. The decision-
making component is based on the DQN algorithm [18].

Specifically, Auter applies a basic architecture containing two
hidden layers with (32, 16) neurons and tanh activation func-
tions. The inputs and outputs of Auter are low-dimensional
vectors so that the lightweight structure is adequate. Mean-
while, the lightweight structure can reduce response time and
resource occupation.

We customize the environment template provided by stable-
baselines. A typical RL model implementation using stable-
baselines consists of two parts: the policy and the environ-
ment. The policy defines the decision-making mechanism,
while the environment provides the interface with the target.
Our customized environment integrates the network percep-
tion and tuning policy enforcement modules. Specifically,
Auter observes the traffic on the server in real-time, tunes
the buffer size, and generates state (Si) and reward (ri) in the
environment template. We first capture and analyze packets
via PyShark package. Next, we tune each buffer according
to Algorithm 1. Finally, we modify network parameters at
runtime with two tools: ethtool that tunes the ring buffer and
sysctl that tunes the socket buffer and TCP socket buffer.

A. Hyperparameter Configuration

Table II shows the hyper-parameters in our DQN model. The
parameters n actions and n features are decided by the system
requirements without additional configuration. learning rate
would affect the convergence rate of the neural network and
the default value is appropriate for our system. reward decay
(γ) is a discount factor of the reward, which could directly
affect the training effect. In the training process of the network
environment, the larger the discount factor is, the faster a stable
policy will be learned in the DRL agent. Therefore, we select
a large value of 0.9. Other parameters are related to the sample
size during the training. As they have little effect on policy
generation, we use the default values.

We also test each buffer parameter to determine the step
size of tuning. We tune each buffer for 100 epochs with
different step sizes. When the step size grows larger than
512 Bytes, the tuning effect is relatively stable. Therefore, we
select the step size of 1024 Bytes for TCP socket buffer and
socket buffer. For ring buffer, the throughput gain brought from
tuning is not obvious since the tuning would result in jitters or
even connection interrupts. Due to the relatively small tunable
interval of ring buffer, we select the step size of 8.

B. Deployment and Training

Shadowsocks system consists of two parts: a remote server
(SS Server) and a local client (SS Local). SS Server, which
is responsible for request parsing and traffic forwarding, is
the performance bottleneck of the whole system. Thus, we
deploy our system on the SS Server. To train our model,
we deploy Shadowsocks system on two local machines (the
local and target host) and a VPS (SS Server) to simulate
the unstable network environments through Traffic Control
(TC) [23]. During the training, all buffer values are reset every
100 epochs to explore optimal values as much as possible.
Besides, our training session lasts 4,500 epochs. Figure 3

5

1693
Authorized licensed use limited to: George Mason University. Downloaded on June 25,2022 at 18:12:50 UTC from IEEE Xplore. Restrictions apply.

TABLE II
HYPER-PARAMETERS OF OUR DRL MODEL

Parameter Setting Value

n actions 4
n features 7

learning rate 0.1
reward decay (γ) 0.99

e greedy (ε) 0.9
e greedy increment None

memory size 500
batch size 32

replace target iter 50

 450

 550

 650

 750

 0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t (

K
bi

ts
/s

ec
)

Epoch

(a) Throughput in training phase.

 0

 1k

 2k

 3k

 4k

 5k

 0 100 200 300 400 500 600 700

B
uf

fe
r

S
iz

e

Epoch

(b) Ring buffer size in training phase.

0

50k

100k

150k

 0 100 200 300 400 500 600 700

B
uf

fe
r

S
iz

e
(B

yt
e)

Epoch

(c) TCP socket buffer size in training phase.

 20k

 25k

 30k

 35k

 0 100 200 300 400 500 600 700

B
uf

fe
r

S
iz

e
(B

yt
e)

Epoch

(d) Socket buffer size in training phase.

Fig. 3. The training process of Auter.

shows the throughput and three buffer values during our
training session. We find that the throughput performance rises
and falls suddenly. Also, the knees of the throughput curve can
correspond to the values of buffer parameters, indicating the
optimal parameter range. There are two humps in the through-
put curve from 250 epoch to 400 epoch, which corresponds
to the peaks of each buffer in Figure 3 (b-d). This reveals
that the reasonable values of the three buffers are the key to
performance improvement. Besides, the throughput between
500 epoch and 700 epoch drops dramatically because of the
low value of TCP socket buffer. And the continued sluggish
throughput in turn makes the ring buffer decline, which shows

TABLE III
DEVICE CONFIGURATIONS OF OUR TESTBEDS

Type Local Host VPS 1 VPS 2

Number 2 3 1
CPU E5-2620 E5-2673 E5-2673

Memory 16GB 1GB 1GB
Bandwidth 1 Gbps 1 Gbps 1 Mbps

OS 18.04 LTS 18.04 LTS 18.04 LTS
Provider Dell Azure Tencent
Location Local ES (2), WE (1) EA

there is a strong correlation between these buffers.

V. PERFORMANCE EVALUATION

We conduct experiments under various network conditions
to evaluate the system performance. We first evaluate the
adaptability of Auter on a local emulated testbed, which is
similar to the training environment. Two local machines work
as the source and target hosts, and a VPS located at U.S.
Eastern plays the role of a remote server. We use the TC tool
to emulate the volatile properties of network environments.

We also deploy our system in a real cloud environment
to verify its effectiveness. The real testbed consists of three
deployment locations. The device configurations are shown
in Table III. The SS local is deployed on the VPS in local
network, and three SS Servers are deployed in the East (ES),
the West (WE) and the East Asia (EA), respectively. to test the
system performance under different network environments.

A. System Adaptability

On our local emulation testbed, we quantitatively control
four link state metrics: bandwidth, latency, packet loss, and
size of TCP flows. Then, we observe the performance of Auter
with the change of each single state metric.
Under Different Latency. We verify the adaptability of Auter
with different latency by sending fixed-size TCP flows in a
single connection on the local testbed. Figure 4 shows that
Auter achieves up to a 4.67 times increase in throughput
with an extra simulated latency of 40 ms. The growth rate
of throughput is the lowest without simulated latency since
the bandwidth utilization approaches the topmost level and
leaves less room for optimization. Meanwhile, as shown in
Figure 4(b), the real delay (∆latency) does not significantly
increase with Auter. The difference between the delays with
and without Auter is less than one millisecond on average.
Under Different Bandwidth. We test five scenarios of differ-
ent network bandwidths. As shown in Figure 5, the average
bandwidth utilization increases by 11.84% with Auter. Be-
sides, we notice that the bandwidth utilization is relatively
low in the low bandwidth scenarios. In terms of latency,
Auter introduces relatively high latency for links with low
bandwidth. That is because our trained model prefers to give
a policy of increasing the buffer size at most cases.
Under Different Packet Loss. Packet loss is the most com-
mon problem when the network link is unstable or congested.
Therefore, we test five scenarios with different packet loss

6

1694
Authorized licensed use limited to: George Mason University. Downloaded on June 25,2022 at 18:12:50 UTC from IEEE Xplore. Restrictions apply.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Latency (ms)

w/ Auter
w/o Auter

(a) Impact on Throughput

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

Δ
L

at
en

cy
 (

m
s)

Latency (ms)

w/ Auter
w/o Auter

(b) Impact on ∆Latency

Fig. 4. Impacts of latency on throughput and ∆latency.

 0

 20

 40

 60

 80

 100

1M 10M 100M 500M 1G

B
an

dw
id

th
 U

ti
li

za
ti

on
 (

%
)

Bandwidth (bps)

w/ Auter
w/o Auter

(a) Impact on BW. Utilization

 0

 2

 4

 6

 8

 10

 12

1M 10M 100M 500M 1G

A
vg

 L
at

en
cy

 (
m

s)

Bandwidth (bps)

w/ Auter
w/o Auter

(b) Impact on Avg. Latency

Fig. 5. Impacts of bandwidth on throughput and latency.

ratios in our experiments. Figure 6 shows that Auter only
brings slightly throughput improvement. It is caused by the
congestion control algorithm, which would quickly reduce the
sending rate when packet loss is detected. When the sending
rate is limited, it is hard to improve the performance only by
tuning buffers. Besides, the latency remains stable. Auter does
not add extra latency, compared with the original latency.
Under Various Sizes of TCP Flow. As different applica-
tions usually mean different workloads, we test five flow
sizes and random flow combinations. As shown in Figure 7,
Auter delivers general performance improvements and is more
friendly to large size flows, except for the random flow
combinations. This is because a single TCP connection of
bulk file transfer would remain stable for a long time after
it is established. Thus, the buffer remains stable after being
tuned to an appropriate size. For the TCP flows with frequent
establishment and short duration, the buffers and congestion
windows can hardly adjust in time; hence the performance
improvement is limited. Besides, Auter remains stable without
introducing extra latency with multiple flows. We also find the
average delay increases with the decrease of flow size. It is
caused by frequent establishment of TCP flows and hence the
performance remains the same with or without Auter.
Summary. The above experiments show that Auter is resilient
to various network environments. Specifically, we observe that
Auter can improve the throughput under these four network
conditions by 296.77%, 11.84%, 10.23%, and 12.96% on
average, respectively. Meanwhile, our method only brings
no more than 0.8 ms extra delay in Shadowsocks networks.
Thus, we conclude that Auter can perform consistently well
within complex network conditions, especially for high latency
networks where the average throughput increases by 296.77%.

B. Real World Experiments

To evaluate the effectiveness of Auter in practice, we deploy
the system in three cloud data centers: The East (ES), the West

 0

 200

 400

 600

 800

 1000

 0 1 2 3 4 5

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Packet Loss (%)

w/ Auter
w/o Auter

(a) Impact on Throughput

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5

A
vg

 L
at

en
cy

 (
m

s)

Packet Loss (%)

w/ Auter
w/o Auter

(b) Impact on Avg. Latency

Fig. 6. Impacts of packet loss on throughput and latency.

 0

 200

 400

 600

 800

 1000

10k 1M 10M 100M 1G Random

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Size of TCP Flow (Byte)

w/ Auter
w/o Auter

(a) Impact on Throughput

 0

 2

 4

 6

 8

 10

 12

10k 1M 10M 100M 1G Random

A
vg

 L
at

en
cy

 (
m

s)

Size of TCP Flow (Byte)

w/ Auter
w/o Auter

(b) Impact on Avg. Latency

Fig. 7. Impacts of flow size on throughput and latency.

(WE), and the East Asia (EA). Within the three regions, we
compare Auter with existing optimization solutions, including
baseline (default setting of Shadowsocks), BBR (the enhanced
congestion control), and max buffer scheme [14]. Moreover,
we run Auter to handle two traffic modes, i.e., short traffic and
long traffic. The experimental results are shown in Table IV.
Comparisons of Different Deployment Locations. We com-
pare the performance of our method with different transmis-
sion distances. In Table IV, the performance improvements
brought by Auter in the three regions are 30.36%, 28.67%, and
2.07% on average, respectively. When deploying SS Local in
ES and SS Server in WE or EA, Auter can bring significant
gains. Meanwhile, it has minor impact when deploying the
Shadowsocks system in a local region (ES & ES). The differ-
ence of performance improvement between different regions is
derived from their varying ”lifting space”. When the Shadow-
socks system runs without any optimization scheme (baseline),
the bandwidth utilization in each region is 16.15% (ES & EA),
10.12% (ES & WE), and 90.72% (ES & ES), respectively.
Higher bandwidth utilization means the parameter values in
the current system are close to a reasonable range. Hence, the
optimization solution cannot bring significant improvements.
Comparisons of Different Optimization Schemes. The ex-
isting Shadowsocks suites involve some performance opti-
mization schemes, including adapting BBR instead of default
congestion control algorithms and increasing the buffer pa-
rameters, e.g., maximizing buffer size [14]. We compare Auter
with BBR and the max buffer scheme. As shown in Table IV,
the gain brought by Auter is 20.33% on average. However,
the max buffer scheme can only bring 8.64% gain on average.
The max buffer scheme sometimes even brings negative gain.
Such results are from the huge gap of buffer size between the
sending and receiving end. Despite some fluctuations, Auter is
still better than BBR, achieving 15.93% gain on average.
Meanwhile, when combining Auter with BBR, the cooperation

7

1695
Authorized licensed use limited to: George Mason University. Downloaded on June 25,2022 at 18:12:50 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
COMPARISON OF LATENCY AND THROUGHPUT IN REAL WORLD SHADOWSOCKS TESTBED

Traffic mode Short traffic Long traffic
Region ES & EA ES & WE ES & ES ES & EA ES & WE ES & ES

Latency

Baseline 252.16 ms 63.9 ms 3.44 ms 267.3 ms 68.2 ms 2.84 ms
BBR 243.88 ms 62.7 ms 2.91 ms 252 ms 66 ms 2.63 ms

Max Buffer 261.3 ms 64.54 ms 2.73 ms 266.58 ms 65 ms 2.96 ms
Auter 271.04 ms 64.22 ms 3.78 ms 281.12 ms 67.4 ms 2.94 ms

Auter + BBR 266.14 ms 62.9 ms 2.99 ms 284.3 ms 67.7 ms 2.8 ms

Throughput

Baseline 186.4 Kbps 101 Mbps 947 Mbps 144.33 Kbps 106.3 Mbps 911 Mbps
BBR 214.62 Kbps (15%) 109.2 Mbps (+8.1%) 956 Mbps (+1.0%) 193.68 Kbps (+34.2%) 144.4 Mbps (+35.8%) 923 Mbps (+1.3%)

Max Buffer 166.32 Kbps (-9.7%) 117 Mbps (+15.8%) 944 Mbps (-0.02%) 169.06 Kbps (+17.1%) 137.1 Mbps (+28.9%) 930 Mbps (+2%)
Auter 224.08 Kbps (+20.2%) 125 Mbps (+23.8%) 952 Mbps (+0.5%) 202.78 Kbps (+40.5%) 142 Mbps (+33.6%) 932 Mbps (+2.3%)

Auter + BBR 241.47 Kbps (+29.5%)* 128.67 Mbps (+27.4%) 954 Mbps (+0.7%) 235.22 Kbps (+63.9%) 147.8 Mbps (+39.0%) 942 Mbps (+3.4%)
* Compared to the baseline setting.

 80

 120

 160

 200

 240

 280

 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

T
ho

ug
hp

ut
 (

K
bi

t/
s)

#Hours

tune-1 tune-2 Max Default Auter

Fig. 8. Long time test for five schemes.

 0

 10

 20

 30

 40

 50

10 100 200 500 800 1000

P
er

ce
nt

ag
e

(%
)

#Links

Max
Auter
Default

Fig. 9. Comparison of memory consumption.

brings the best performance in all the schemes tested, i.e.,
28% on average. Thus, Auter can further improve network
performance based on suitable congestion control algorithms.

Moreover, we notice that the delays in all these four
optimization schemes are less than the median deviation of
the real-time delay in each scenario. This means that even if
no optimization solution is deployed, these delays may appear
in the current network environment. Therefore, we believe that
Auter would not bring additional delay burden.
Comparisons of Different Traffic Modes. The short traffic
mode and the long traffic mode are emulated by random
website visits and large file transfer, respectively. We find
that processing long traffic is generally slower than processing
short traffic in Shadowsocks, regardless of regional difference.
This is mainly because long traffic usually lasts for longer
time and requires higher network stability, which happens
to be the weakness of Shadowsocks networks. However, it
is worth noting that the performance improvement of our

method in processing long flows (24.86% on average) is higher
than that in processing short flows (14.83% on average). The
SS Server actually plays the role of an intermediate server in
the Shadowsocks system for traffic forwarding. The network
conditions on both sides of intermediate server are different
due to the distance and censorship issues. For the forwarded
traffic, the buffers in the network subsystem can alleviate the
non-synchronization between the two sides. Therefore, Auter
remits the volatility of the network to a certain extent by
dynamically adjusting the buffer size.

Comparisons of Throughput for Long Running Time.
We test the throughput of 5 schemes deployed between ES
and EA within 31 hours, as shown in Figure 8. Basically,
all the 4 schemes can improve the performance compared
with the default configuration, while the Auter can bring
the most performance gain. This is because static parameter
configuration is not always optimal in a long period. The
continuous tuning of Auter can help the system adapt to the
real-time network environments.

Comparisons of Memory Usage. Memory consumption is
critical to Shadowsocks since SS Server is usually deployed
on VPS with limited resources. We compare the memory usage
in three configurations: the max buffer, Auter, and the default
buffer size. In Figure 9, the traffic occupied by SS Server
inevitably rises with the increase in the number of connections.
Although both max buffer and Auter increase memory con-
sumption compared to the default configuration, the upward
trend caused by the max buffer is more prominent than that
of Auter. When the number of connections reaches 1000, the
gap in memory usage has exceeded 15%. The higher memory
usage is mainly caused by the larger socket buffer value, which
increases the memory usage of a single link. It accelerates
the memory consumption when the connection number and
connection time increase. The max buffer scheme leads to the
largest socket buffer increment. In contrast, Auter increases the
socket buffer size to less than 1MB, consuming less memory.

Summary. We have the following observations from our
experiments. First, Auter can be applied to improve the
long-distance Shadowsocks applications with low bandwidth
utilization. Second, it outperforms the max buffer scheme and
can cooperate with the BBR to further improve performance.

8

1696
Authorized licensed use limited to: George Mason University. Downloaded on June 25,2022 at 18:12:50 UTC from IEEE Xplore. Restrictions apply.

Third, Auter is more effective for long flows. Fourth, Auter can
stably outperform static schemes in long running time. Finally,
it consumes less memory than the max buffer scheme.

VI. DISCUSSIONS

Deploying Auter in Senders and Receivers. We deploy Auter
at the SS Server, which acts as the intermediate server in
the entire communication. Actually, the parameters of both
the sender and the receiver also have a significant impact on
the performance of the networking subsystem. For example,
the socket receiving buffer can affect the sending rate of the
current session since the receiving rate is fed back to the
sender by the ACK packets. Hence, we may consider to deploy
Auter at both the sender and receiver simultaneously. However,
the synchronous parameter tuning at both sides may bring
additional overhead, which requires further study.
Extending Auter to Other Applications. Our work focuses
on improving the performance of the Shadowsocks application
in this paper. It is promising to extend Auter to enhancing
other applications that work in unstable network scenarios,
such as tunnel networks and high-load data center networks.
Moreover, Auter may improve the performance of UDP flows
by tuning the UDP socket buffer along with the ring buffers,
and we will leave it for future work.
Jointly Tuning More Parameters. In this paper, as a proof
of concept, our system jointly tunes the parameters for three
network buffers. In complex network systems, there are more
parameters that may affect the network performance [13]. As
the overall performance is actually determined by the weakest
one, it could be further improved if other parameters are
tuned. For instance, there are 28 numerical parameters that
can be tuned in the Linux kernel of version 5.3. To tune these
parameters, we need to understand how they work and their
potential side effects.

VII. RELATED WORK

Network Performance Tuning. Parameter tuning is the basic
work of network performance optimization [9], [24], [25]. Ba-
sically, researchers deeply analyze the networking subsystem
and conclude the optimal parameter configurations based on
the device status [26], [27]. However, they heavily rely on the
operators’ experience and domain knowledge. Therefore, self-
tuning mechanisms emerge, such as byte queue limits [28]
and sending window scaling [12]. Moreover, learning-based
methods [7] bring automation and specificity into the TCP
performance tuning task. Genetic algorithm is used to search
the most suitable set of parameters for the network perfor-
mance tuning [6]. Besides, automatic adjustment mechanism
is designed based on the relation between a single parameter
and system performance metrics [5].

The specificity of tuning scheme means the tuning can
focus on specific performance metrics [29], [30], [31], appli-
cations [32], and usage scenarios [33]. It is hard to satisfy all
performance requirements with a single collection of param-
eter settings. Red Hat develops a project called tuned [33],
which provides a series of parameter combinations to adapt

to specific usage scenarios, e.g., the wifi environment or the
Ethernet connection. Besides, porting the network stack from
kernel to user space can also optimize the entire network
performance [34]. User-space network stack provides more
adjustable space, benefiting to customize the network-related
parameters for the application-specific workloads.
Applications of RL on Networking. In network, many
optimization problems can be solved by reinforcement learn-
ing [35], such as routing [36], scheduling [8], and congestion
control problems [20]. The routing problem is a global path
optimization problem [36]. The optimal path can be deter-
mined via RL, where the state is the throughput between
two ends and the reward is the mean delay in the selected
two ends. The scheduling problem aims to maximize the
forwarding efficiency for packages. To respond promptly, the
scheduling is executed with the pre-determined policies, which
are adjusted by RL agents [8]. Congestion control is actually
a rate control problem. For the RL-based congestion control
algorithms, researchers focus on designing a comprehensive
reward function [20]. That is because the congestion control
algorithms are based on one specific network state signal [37],
which may lead to misjudgments and performance reduction.

In addition, RL is also utilized to solve network security
problems. Existing studies show that RL can be used to defend
against cyber-physical attacks in distributed networks and ad-
hoc networks [38]. Also, to cope with jamming attacks, the
RL agent can be leveraged to select a proper channel to send
the signals, avoiding interference from jammers [39].

VIII. CONCLUSION

In this paper, we propose a network performance tuning
system named Auter, which automatically and dynamically
tune multi-layer network buffers to improve the performance
of Shadowsocks. Our system contains three components: net-
work perception, decision making, and policy enforcement.
The network performance states are collected by the net-
work perception. Based on these states, the tuning policies
are generated by the decision making. Finally, the policy
enforcement maps policies into new configurations. Due to
the different impact patterns of these three parameters on
network performance, we design a differentiated buffer tuning
mechanism, which would tune each buffer with different scale,
range, and interval. We implement and evaluate our system
for multiple network scenarios on both the local testbed and
cloud testbed. The results in the local testbed show that Auter
is robust for various network scenarios, especially in the long-
distance network. And the results on the cloud platform prove
that our method not only outperforms stably the existing
optimization scheme by 20.33% in long time, but also can
cooperate with the BBR to further improve the throughput by
up to 63.9% compared with the default configuration.
Acknowledgment. The research is partially supported by U.S.
ONR Grants N00014-18-2893 and N00014-20-1-2407, U.S.
NSF Grant CNS-1815650, NSFC Grant 62132011, and the
Shuimu Tsinghua Scholar Program. Qi Li and Jiahao Cao are
the corresponding authors.

9

1697
Authorized licensed use limited to: George Mason University. Downloaded on June 25,2022 at 18:12:50 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Wikipedia contributors, “Shadowsocks wikipedia, the free encyclope-
dia,” 2021, https://en.wikipedia.org/w/index.php?title=Shadowsocks&o
ldid=999060102.

[2] J. Beznazwy and A. Houmansadr, “How china detects and blocks shad-
owsocks,” in Proceedings of the ACM Internet Measurement Conference,
2020, pp. 111–124.

[3] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” Queue, vol. 14, no. 5, pp.
20–53, 2016.

[4] Xiao Guoan, “How to install shadowsocks-libev proxy server on debian
10 vps,” 2020, https://www.linuxbabe.com/debian/install-shadowsocks
-libev-proxy-server-debian-10.

[5] J. Semke, J. Mahdavi, and M. Mathis, “Automatic tcp buffer tuning,”
in Proceedings of the ACM SIGCOMM’98 conference on Applications,
technologies, architectures, and protocols for computer communication,
1998, pp. 315–323.

[6] B. Gembala, A. Yazidi, H. Haugerud, and S. Nichele, “Autonomous
configuration of network parameters in operating systems using evolu-
tionary algorithms,” in Proceedings of the 2018 Conference on Research
in Adaptive and Convergent Systems, 2018, pp. 118–125.

[7] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, p. 16, 2018.

[8] L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, 2018, pp. 191–205.

[9] packagecloud, “Monitoring and tuning the linux networking stack:
Receiving data,” 2017, https://blog.packagecloud.io/eng/2016/06/22/mo
nitoring-tuning-linux-networking-stack-receiving-data/.

[10] M. D. Leech, “SOCKS Protocol Version 5,” Internet Requests
for Comments, Tech. Rep. 1928, mar 1996. [Online]. Available:
https://rfc-editor.org/rfc/rfc1928.txt

[11] T. Hruby, T. Crivat, H. Bos, and A. S. Tanenbaum, “On sockets and
system calls: Minimizing context switches for the socket api,” in 2014
Conference on Timely Results in Operating Systems (TRIOS 14), 2014.

[12] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High
Performance,” Internet Requests for Comments, Internet Engineering
Task Force, RFC 1323, May 1992. [Online]. Available: {http:
//www.rfc-editor.org/rfc/rfc1323.txt}

[13] D. Siemon, “Queueing in the linux network stack,” Linux Journal, vol.
2013, no. 231, p. 2, 2013.

[14] “Shadowsocks guide 2019 — install + configuration + optimization,”
2019, https://fanqiang.network/637.html.

[15] “Linux Tuning,” https://fasterdata.es.net/host-tuning/linux/.
[16] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and

M. Schapira, “Pcc vivace: Online-learning congestion control,” in 15th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), 2018, pp. 343–356.

[17] M.-S. Kim, Y. J. Won, H.-J. Lee, J. W. Hong, and R. Boutaba, “Flow-
based characteristic analysis of internet application traffic,” in Workshop
Chair.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[19] F. Pukelsheim, “The three sigma rule,” The American Statistician,
vol. 48, no. 2, pp. 88–91, 1994.

[20] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep
reinforcement learning perspective on internet congestion control,” in
International Conference on Machine Learning, 2019, pp. 3050–3059.

[21] Z. Xu, J. Tang, C. Yin, Y. Wang, and G. Xue, “Experience-driven
congestion control: When multi-path tcp meets deep reinforcement
learning,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 6, pp. 1325–1336, 2019.

[22] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “Openai baselines,” https:
//github.com/openai/baselines, 2017.

[23] M. Noormohammadpour and C. S. Raghavendra, “Datacenter traffic
control: Understanding techniques and tradeoffs,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 2, pp. 1492–1525, 2017.

[24] packagecloud, “Monitoring and tuning the linux networking stack:
Sending data,” 2017, https://blog.packagecloud.io/eng/2017/02/06/mo
nitoring-tuning-linux-networking-stack-sending-data/.

[25] I. K. Center, “Network performance tuning,” 2020, https:
//www.ibm.com/support/knowledgecenter/en/linuxonibm/liaag/wk
vm/wkvm c tune.htm.

[26] W. Wu, M. Crawford, and M. Bowden, “The performance analysis of
linux networking–packet receiving,” Computer Communications, vol. 30,
no. 5, pp. 1044–1057, 2007.

[27] B. H. Leitao, “Tuning 10gb network cards on linux,” in Proceedings of
the 2009 Linux Symposium. Citeseer, 2009, pp. 169–185.

[28] T. Herbert, “bql: Byte Queue Limits,” 2012, https://lwn.net/Articles
/469652/.

[29] E. Sert, C. Sönmez, S. Baghaee, and E. Uysal-Biyikoglu, “Optimizing
age of information on real-life tcp/ip connections through reinforcement
learning,” in 2018 26th Signal Processing and Communications Appli-
cations Conference (SIU). IEEE, 2018, pp. 1–4.

[30] N. Arianpoo and V. C. Leung, “How network monitoring and reinforce-
ment learning can improve tcp fairness in wireless multi-hop networks,”
EURASIP Journal on Wireless Communications and Networking, vol.
2016, no. 1, p. 278, 2016.

[31] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren, and
G. Porter, “Expanding across time to deliver bandwidth efficiency and
low latency,” in 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), 2020, pp. 1–18.

[32] X. Nie, Y. Zhao, D. Pei, G. Chen, K. Sui, and J. Zhang, “Reducing web
latency through dynamically setting tcp initial window with reinforce-
ment learning,” in 2018 IEEE/ACM 26th International Symposium on
Quality of Service (IWQoS). IEEE, 2018, pp. 1–10.

[33] “Project ”tuned”: Daemon for monitoring and adaptive tuning of system
devices,” Sep. 2020, https://github.com/redhat-performance/tuned.

[34] I. Marinos, R. N. Watson, and M. Handley, “Network stack specialization
for performance,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 4, pp. 175–186, 2014.

[35] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint
arXiv:1701.07274, 2017.

[36] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2018, pp. 1871–1879.

[37] K. A. Yadav and S. Kumar, “A review of congestion control mecha-
nisms for wireless networks,” in 2017 2nd International Conference on
Communication and Electronics Systems (ICCES). IEEE, 2017, pp.
109–115.

[38] A. Ferdowsi, U. Challita, W. Saad, and N. B. Mandayam, “Robust
deep reinforcement learning for security and safety in autonomous
vehicle systems,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2018, pp. 307–312.

[39] G. Han, L. Xiao, and H. V. Poor, “Two-dimensional anti-jamming
communication based on deep reinforcement learning,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017, pp. 2087–2091.

10

1698
Authorized licensed use limited to: George Mason University. Downloaded on June 25,2022 at 18:12:50 UTC from IEEE Xplore. Restrictions apply.

