Exploring Security Commits in Python

Shiyu Sun’, Shu Wang', Xinda Wang', Yunlong Xing', Elisa Zhang?, Kun Sun’

'Center for Secure Information Systems, George Mason University
2Dougherty Valley High School

Outline

e Background

e Previous Solutions and Limitations
e Data Collection System

e Collected Data Analysis

e Security Patch Pattern Discovery

Background

e Python overtakes Java and C as the most popular programming language
e Alarge volume of OSS security patches (e.g., GitHub commits fixing vulnerabilities) are

silently released.
o Not reported to MITRE

From 7f9822a48213dd2feca845dbbb6bcb8beb9550de
Subject: [PATCH] Add blinding to a DSA signature

This is based on side channel attacks demonstrated by (NCC Group)
for ECDSA which are likely to be able to be applied to DSA.

o Does not have explicit commit message

From 41bdc78544b8a93a9c6814b8bbbfef966272abbe
Subject: [PATCH] x86/tls: Validate TLS entries to protect espfix

Installing a 16-bit RW data segment into the GDT defeats espfix.
AFAICT this will not affect glibc, Wine, or dosemu at all.

e Timely security commit detection
e Assistance for auto-program repair tools

Previous Solutions and Limitations

1 [From a2b169ffdefld7c1755bade8138578423b35011b Mon Sep 17 00:00:00 2001
From: Alexander Todorov <atodorov@otb.bg>

S~ WN

Date: Mon__7 Nov 2022 17:52:57 10200
Subject: [PATCH] Clean HTML input when generating history diff

e Commit Log [1]

o Mining security keywords or security 2| (1505 09 pFGEDE eF Gt
8 t / /hist . 9
keyword sequence O 1file changed, § tnsertions(n)
. . . . 10
u ReqUIrlng We”_malntalned dOC 11 diff —--git a/tcms/core/history.py b/tcms/core/history.py
12 index abc2edc264..76a9fcccc2 100644
e Source Code [2,3] =
ini i 15 @@ d
© Mlnlng S.eC.U”tY code feature or sequence §6 A{fArom simple_history.admin import SimpleAistoryAdmin
m M|SS|ng Importance Structure i; from simple_history.models import HistoricalRecords
. 21
(Y Our SOIUt'On 22 | def diff_objects(old_instance, new_instance, fields):
23 e
o Take both into consideration o ey
H . H 26 1d_value = getattr(old_inst , field.att)
m Commit log: easy to mining 27 S SRR T U
m If no log, code: provide precise 2 |+
30 |+
feature 31 |+
32 |+ e
33 |+
34 |+

[1] Zhou, Yagqin, et al. "Spi: Automated identification of security patches via commits." ACM Transactions on Software Engineering and Methodology (TOSEM) 31.1 (2021): 1-27.
[2] Wang, Xinda, et al. "Patchdb: A large-scale security patch dataset." 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 2021.
[3] Wang, Shu, et al. "GraphSPD: Graph-based security patch detection with enriched code semantics." 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2023.

Our Solution: A Comprehensive Security Patch Collection System

!

commit
Prediction _

SCOPY

Candidates

D |-| _ Content from hyperlinks _ Sl
o _ associated with CVE _'_ — @
Topic Modeling
------------- Base Dataset
commit ::. commit
====(:) Manual -——-(:)
Verification
Candidates Pilot Dataset
ﬂ commit
—_— Manual > | — @
Verification

Augmented
Dataset

(1) Base dataset: From MITRE

@ Pilot dataset: Analyze Commit Msg

Subject: [PATCH] fix: reject NUL character as path element

See: https://github.com/Pylons/pyramid/security/advisories/GHSA-]

3 Augmented dataset: Analyze Code

- seps = {'/', os.sep}

+_invalid_element_chars = {'/', os.sep, '\x00'}

(D Base Dataset: Extracting Security Patches from MITRE

For each CVE entry, we download its patch from the Git Hyperlink and exclude the commits
that are not written in Python or only focus on security-unrelated modifications (e.g.,
renaming and refactoring).

w : Full-Screen View

CVE-ID
CVE-2023-24816 Learn more at National Vulnerability Database (NVD)
* CVSS Severity Rating » Fix Information e Vulnerable Software Versions ¢ SCAP Mappings » CPE Information
Description

IPython (Interactive Python) is a command shell for interactive computing in multiple programming languages, originally developed for the Python programming language. Versions prior to 8.1.0 are subject to a command
injection vulnerability with very specific prerequisites. This vulnerability requires that the function *IPython.utils.terminal.set_term_title' be called on Windows in a Python environment where ctypes is not available. The
dependency on “ctypes® in 'IPython.utils._process_win32" prevents the vulnerable code from ever being reached in the ipython binary. However, as a library that could be used by another tool "set_term_title* could be
called and hence introduce a vulnerability. Should an attacker get untrusted input to an instance of this function they would be able to inject shell commands as current process and limited to the scope of the current process.
Users of ipython as a library are advised to upgrade. Users unable to upgrade should ensure that any calls to the " IPython.utils.terminal.set_term_title' function are done with trusted or filtered input.

References

Note: References are provided for the convenience of the reader to help distinguish between vulnerabilities. The list is not intended to be complete.
From 991849c247£c208628879e7ca2923b3c218a5a75 Mon Sep 17 00:00:00 2001
From: Konstantin Weddige <konstantin.weddige@lutrasecurity.com>

Date: Sat, 3 Dec 2022 19:14:09 +0100

MISC:https://github.com/ipython/ipython/blob/3f0bf05f072a91b2a3042d23ce250e5e906183fd/IPython/utils/terminal.py#L103-L117

* URL:https://github.com/ipython/ipython/blob/3f0bf05f072a91b2a3042d23ce250e5e906183fd/IPython/utils/terminal.py#L103-L117 Subject: [PATCH] Fix CVE-2023-24816 by removing legacy code.
e MISC:https://github.com/ipython/ipython/blob/56e6925dfa50e2c7f4a6471547b8176275db7c25/IPython/utils/ process win32.py#L20
e URL:https: //glthub com/mython/lpvthon/blob/56e6925dfa50e2c7f4a6471547b8176275db7c25/IPvthon/ut|Is/ process win32.py#L20 Remove legacy code that might trigger a CVE.

Currently set_term title is only called with (semi-)trusted input that
contain the current working directory of the current IPython session. If
an attacker can control directory names, and manage to get a user cd
into this directory the attacker can execute arbitrary commands
contained in the folder names.

URL: https //glthub com/mvthon/|thhon/commltz3 85d69325319a5972ee9b5983638e3617f21cbif
MISC:https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7
URL:https://github.com/ipython/ipython/security/advisories/GHSA-29gw-9793-fvw7

CVE-2023-24816 Detail

(@ Pilot Dataset: Augmenting via Keyword-filtering

Rationale: 8% GitHub commits are security patches without a CVE-ID; only 46%
of indexed CVE records contain the corresponding security fixes.

: . Security Security
C(::; I:rl]-lrzitis v Keyword-filter Commits g Commits
Candidates Candidates

TABLE I: Security-related keywords for commit filtering.

#Tokens | Keywords
attack, bypass, CVE, DoS, exploit, injection,
1-gram leakage, malicious, overflow, smuggling,
spoofing, unauthorized, underflow, vulnerability
2-gram | access control, open redirect, race condition

3-gram | denial of service, out of bound, dot dot slash

@ Augmented Dataset: Extending via Graph Learning

The pilot dataset overlooks the commits that lack security keywords in the commit
messages, while these commits may provide additional variants in syntax and
semantics

Target CommitCPG SCOPY
Commit

e CommitCPG: graph representation of inherent code change structures.
e SCOPY: graph learning of structural and sequential semantics for security

commit detection.

CommitCPG: From Commit to Graph

e Challenge: how to construct CommitCPG?

e Syntax and semantics: program dependency graph
Changes and relations: merged and sliced previous-version and current version commit graph

([J
I
|
—> I =S I
Pre-Versi = i : i
— re-YERHOR P.re Versxon. Pre-Version CPG | Merge Slice
—_— Source Code Modified, Function |
— Retive Modified Function List F
Commit — — Merged CPG Commit it
> — P — >
Cur-Version Cur-Version -
Cur-Version CPG

Source Code Modified Function

(a) Commit Preprocessing :) <))
. (b) CPG Generation 2 (¢) CommitCPG Generation

SCOPY: Detect Security Patches from CommitCPGs

e Challenges and Solutions:

o How to embed the CommitCPG?
m Node: CodeBERT; Edge: [AST, CFG, DDG]; Graph: Graph Neural Network

o How to learn multiple attributes of divergent program dependencies from

previous-version commit and current-version commit?

m Graph Convolution with Multi-Head Attention

Node Embedding

...........................

1
[0.123, 0.23, 1.34 ...,0.05] ! . 1 ! : ,
z O s ! h ! ! : :
Node Embedding 1 ' . ! 1 @ Security Commit '
ith CodeBERT : ' | ' : :
i Code | L NG - L .
1
Edge Embedding . : : : : , ® Non-Security Commil:
with Multi-relation ([9. 1. 0] : ' ' : : :

...........................

Embedded Graph Graph Multi-layer

C itCPG
ommt CommitCPG Convolution Embedding Perceptron

Prediction

10

Implementation & Evaluation

Implementation
e 6K new LoC in Scala and Python on top of Joern parser and PyTorch library.
Research Questions

e RQ1: Can the graph learning-based method improve the data collection efficiency?
e RQ2: How various and representative are the collected security commits?

e RQ3: What are the unique patterns of security commits in Python?

11

Dataset Construction (RQ1)

The composition of PySecDB

Dataset ‘ . ’ ‘
)) s Base Pilot Augmented Total
e 1,258 security commits M

. . Securit 729 400 129 1258

e 2,791 non-security commits L | | | |
Non-Security | 2134 | 535 | 122 | 2791
Efficiency of keyword filtering and SCOPY Method | # Candidates | # Verified SC* | Ratio

e . R -1
e Keyword filtering: improve 30%+ efficiency il o | | Gl
Keywords | 935 | 400 | 42.70%
. o .

e SCOPY: improve 40%+ efficiency SCOPY | 251 | 129 | 5139%

* SC = Security Commits.

Security Commits Categorization and Distribution (RQ2)

Top 5 repositories by number of security commits The top 8 CWE types in PySecDB
Repository | #SecurityCommits | Proportion 12 = ' ' ! ' ' ' '
django | 166 | 1320% Sind
~ 8 L
twisted | 87 | 691% g
g 6r
glance | 54 | 4.29% & 4t
=
pillow | 41] 3.26% A~ 2t ’7] H H
numpy | 39 | 3.10% 0 T D Q N _ 0 _ o - © Y2
o @0 AW AW 6 o oo
Total of Top 5 | 387 | 30.76% X ¥ T ¥ o o a o

Patch Patterns (RQ3)

Pattern | #Commits | Proportion
1) Add or Update Sanity Checks | 416 | 37.12%
2) Update API Usage | 241 | 19.16%
3) Update Regular Expressions | 189 | 15.02%
4) Restrict Security Properties | 183 | 14.55%
5) Others | 178 | 14.15%
Total | 1258 | 100%

14

Patch Patterns (RQ3)

Add or Update Sanity Check

Usage scenarios: authentication property verification, access control, HTTP request checking

1 commit c658b4£f3e57258acf5£6207a90c2£2169698ae22

2 diff —g@git a/core.py b/core.py

3 @@ -112,7 +112,7 @@ def actualsys()

4 if attemps ==

5 ## Brute force protection

6 raise Exception ("Too many password attempts.")
7 - if os.environ.get (' GITHUB_ACTIONS’) != "":

8 + if os.environ.get (' GITHUB_ACTIONS’) == "true":

9 logging.warning ("Running on Github Actions")
10 actualsys ()

11 elif uname == cred.name and pwdhash == cred.pass:

An example of security commit that fixes an authorization bypass exploit vulnerability (CVE-2022-46179)

Patch Patterns (RQ3)

Update APl Usage

Usage scenarios: OS command injection, code injection, and regular expression injection

1 commit £6753alalc63fade6ad418fbda827c6750ab0bda
2 diff --git a/weblate/trans/forms.py b/weblate/trans/
Forms <oy

3 @@ -37,6 +37,7 @@

4 ..

5 +from django.utils.html import escape

[J——

T = label = str(unit.translation.language)

8 + label = escape (unit.translation.language)
9

An example of security commit that fixes an XSS vulnerability (CVE-2022-24710)

Patch Patterns (RQ3)

Update Regular Expressions

Usage scenarios: avoid XSS, SQL injection, and open redirect vulnerabilities

1 commit fc2clealb8d795094abbl5ac73cab%90830534e04

2 diff --git a/.../model.py b/.../model.py

3 @@ -772,13 +772,13 QQ@ def _get_filter(self):

4 if self.queueid:

5 - ... = '"%s’'" % (self.queueid)

6 + ce. = "%s'" &% (re.sub("[\""]", "", self.queueid))

An example of security commit that fixes a SQL injection vulnerability (CVE-2014-125082)

17

Patch Patterns (RQ3)

Restrict Security Properties

Usage scenarios: updating boolean flags from True to False or vice versa, adding more
arguments to methods, or adding security decorators.

1 commit 60a3fe559c453bc36b0ec3e5dd39¢c1303640a59a

2 diff --git a/src/nsupdate/settings/base.py b/src/
nsupdate/settings/base.py

@@ -283,7 +283,7 Q@

—CSRF_COOKIE_HTTPONLY = False
+CSRF__COOKIE_HTTPONLY = True

NON D kW

An example of security commit that fixes a vulnerability where the sensitive cookie does not have
a ‘HttpOnly’ flag (CVE-2019-25091)

18

Conclusion and Future Work

e \We publicize a large-scale Python security commit dataset named PySecDB

e We leverage the commit message and source code change to capture the

security attributes of each commit

e \We conduct a large-scale empirical study of security commits by analyzing

PySecDB of 119 CWE categories across 351 repositories
e The Register interviews the paper, sparking discussion.
e Our Data Collection System can be applied to other languages. We will

extend the dataset with other popular languages in future work.

19

Thank you!

Contacts: elisaz.ca@gmail.com, ssun20@amu.edu

Dataset: https://github.com/SunLab-GMU/PySecDB

20

mailto:elisaz.ca@gmail.com
mailto:ssun20@gmu.edu
https://github.com/SunLab-GMU/PySecDB

