
Exploring Security Commits in Python

Shiyu Sun1, Shu Wang1, Xinda Wang1, Yunlong Xing1, Elisa Zhang2, Kun Sun1

1Center for Secure Information Systems, George Mason University
2Dougherty Valley High School



Outline

● Background

● Previous Solutions and Limitations

● Data Collection System

● Collected Data Analysis

● Security Patch Pattern Discovery

2



Background

● Python overtakes Java and C as the most popular programming language
● A large volume of OSS security patches (e.g., GitHub commits fixing vulnerabilities) are 

silently released.
○ Not reported to MITRE

○ Does not have explicit commit message

● Timely security commit detection
● Assistance for auto-program repair tools

3



Previous Solutions and Limitations

● Commit Log [1]
○ Mining security keywords or security 

keyword sequence
■ Requiring well-maintained doc

● Source Code [2,3]
○ Mining security code feature or sequence

■ Missing importance structure 
semantics

● Our solution
○ Take both into consideration

■ Commit log: easy to mining
■ If no log, code: provide precise 

feature

4
[1] Zhou, Yaqin, et al. "Spi: Automated identification of security patches via commits." ACM Transactions on Software Engineering and Methodology (TOSEM) 31.1 (2021): 1-27.
[2] Wang, Xinda, et al. "Patchdb: A large-scale security patch dataset." 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 2021.
[3] Wang, Shu, et al. "GraphSPD: Graph-based security patch detection with enriched code semantics." 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2023.



Our Solution: A Comprehensive Security Patch Collection System

① Base dataset: From MITRE

5

② Pilot dataset: Analyze Commit Msg

③ Augmented dataset: Analyze Code



For each CVE entry, we download its patch from the Git Hyperlink and exclude the commits 
that are not written in Python or only focus on security-unrelated modifications (e.g., 
renaming and refactoring). 

① Base Dataset: Extracting Security Patches from MITRE

CVE-2023-24816 Detail 6



② Pilot Dataset: Augmenting via Keyword-filtering

Rationale: 8% GitHub commits are security patches without a CVE-ID; only 46% 
of indexed CVE records contain the corresponding security fixes.

7

GitHub 
Commits

Keyword-filter
Security 
Commits 

Candidates

Security 
Commits 

Candidates



③ Augmented Dataset: Extending via Graph Learning

The pilot dataset overlooks the commits that lack security keywords in the commit 
messages, while these commits may provide additional variants in syntax and 
semantics.

8

Commit

● CommitCPG: graph representation of inherent code change structures.

● SCOPY: graph learning of structural and sequential semantics for security 

commit detection.

Target 
Commit

CommitCPG SCOPY



CommitCPG: From Commit to Graph

● Challenge: how to construct CommitCPG?
● Syntax and semantics: program dependency graph
● Changes and relations: merged and sliced previous-version and current version commit graph

9



SCOPY: Detect Security Patches from CommitCPGs

● Challenges and Solutions: 

○ How to embed the CommitCPG? 

■ Node: CodeBERT; Edge: [AST, CFG, DDG]; Graph: Graph Neural Network

○ How to learn multiple attributes of divergent program dependencies from 

previous-version commit and current-version commit?

■ Graph Convolution with Multi-Head Attention

10



Implementation & Evaluation

Implementation

● 6K new LoC in Scala and Python on top of Joern parser and PyTorch library.

Research Questions

● RQ1: Can the graph learning-based method improve the data collection efficiency?

● RQ2: How various and representative are the collected security commits?

● RQ3: What are the unique patterns of security commits in Python?

11



Dataset Construction (RQ1)

The composition of PySecDB

● 1,258 security commits

● 2,791 non-security commits

12

Efficiency of keyword filtering and SCOPY

● Keyword filtering: improve 30%+ efficiency

● SCOPY: improve 40%+ efficiency



The top 8 CWE types in PySecDB

Security Commits Categorization and Distribution (RQ2)

Top 5 repositories by number of security commits

13



Patch Patterns (RQ3)

14



Patch Patterns (RQ3)

Add or Update Sanity Check

Usage scenarios: authentication property verification, access control, HTTP request checking

15An example of security commit that fixes an authorization bypass exploit vulnerability (CVE-2022-46179)



Patch Patterns (RQ3)

Update API Usage

Usage scenarios: OS command injection, code injection, and regular expression injection

16

An example of security commit that fixes an XSS vulnerability (CVE-2022-24710)



Patch Patterns (RQ3)

Update Regular Expressions

Usage scenarios: avoid XSS, SQL injection, and open redirect vulnerabilities

17

An example of security commit that fixes a SQL injection vulnerability (CVE-2014-125082)



Patch Patterns (RQ3)

Restrict Security Properties

Usage scenarios: updating boolean flags from True to False or vice versa, adding more 
arguments to methods, or adding security decorators.

18

An example of security commit that fixes a vulnerability where the sensitive cookie does not have 
a ‘HttpOnly’ flag (CVE-2019-25091)



Conclusion and Future Work

● We publicize a large-scale Python security commit dataset named PySecDB

● We leverage the commit message and source code change to capture the 

security attributes of each commit

● We conduct a large-scale empirical study of security commits by analyzing 

PySecDB of 119 CWE categories across 351 repositories

● The Register interviews the paper, sparking discussion.

● Our Data Collection System can be applied to other languages. We will 

extend the dataset with other popular languages in future work.

19



Thank you!

Contacts: elisaz.ca@gmail.com, ssun20@gmu.edu 

Dataset: https://github.com/SunLab-GMU/PySecDB

20

mailto:elisaz.ca@gmail.com
mailto:ssun20@gmu.edu
https://github.com/SunLab-GMU/PySecDB

