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Abstract—Honeypot is an effective tool widely adopted in
security systems, providing rich information to lure attackers.
However, honeypots are not foolproof and can be detected by
sophisticated attackers via specific features, e.g., the lack of
real user activities. In this paper, we propose HoneyMustard,
a real-time application-level user behavior emulation framework
to enhance the fidelity of honeypots. HoneyMustard can emulate
GUI-based user activities in the honeypots by a remote desktop
connection. Because attackers can only observe the remote
connection during the emulation, HoneyMustard can conceal
the emulator as a normal service so that it achieves real-time
user emulation without being detected. The user activities are
emulated by reproducing real user operations or converting
application manuals, ensuring that attackers can observe logical
activities at an application level. We implement a prototype
of HoneyMustard and evaluate the decoy effectiveness and
overhead. The experimental results show that our solution can
effectively improve the fidelity of honeypots with a low overhead.

Index Terms—Honeypot Detection, User Behavior Emulation,
Cyber Deception, Computer Vision

I. INTRODUCTION

The honeypot technique has been widely adopted in security

systems since it was first introduced by Lance Spitzer [1]. Over

the past 20 years, the honeypot has evolved from a simple

toolkit into a complex system equipped with “real” data [2].

Honeypots can capture, analyze, and derive the motivation of

attacks and serve as an early warning to intrusions.

Meanwhile, honeypot detection techniques (also known as

anti-honeypot techniques) have grown among the black hat

community for attackers to identify and bypass honeypots

using unique system/network features. Since the honeypots

lack real user traces, attackers can check the “wear and tear”

artifacts caused by user activities [3] or directly monitor

user activities [4]. To defeat those anti-honeypot techniques,

D2U [5] generates an application usage sequence, but it does

not support logical user operations. UBER [6] can generate

static artifacts by emulating user activities; however, the em-

ulator running in the system may be detected by the attacker.

In this paper, we propose a real-time application-level user

behavior emulation framework, namely HoneyMustard, to en-

hance the fidelity of honeypot systems. Compared to existing

solutions [5], [6], HoneyMustard has two advantages, namely,

generating logical user operations and retaining the emulator
stealthiness. It consists of two main stages: user operation

collection and computer vision-based emulation. In the first

stage, an action dataset is constructed by collecting the user

operations from both real user activities and application user

manuals. These collected user operations share the same logic

as real users, making it hard for attackers to distinguish them

based on user traces. In the second stage, HoneyMustard uses

computer vision techniques to manipulate the GUI interfaces

in the honeypots from a remote server via remote desktop

connections. Nowadays many companies and organizations

have supported employees to work remotely, so it is normal for

attackers to discover a remote desktop connection on a victim’s

device. Therefore, when we use the remote desktop connection

to manipulate the GUI interface in the honeypot, since the

emulation engine is running on a remote server, the attackers

cannot find the emulator in the honeypot. Thus, HoneyMustard

can emulate user activities in real time without being detected.

We implement a prototype of HoneyMustard to demonstrate

the deception effectiveness. We record both emulated and real

user activities into videos for five common tasks, respectively.

Then we conduct a user study that asked 100 online partici-

pants to identify the emulated videos. The experimental results

show the average success rate of deception is 71.8%, which

shows HoneyMustard can effectively deceive attackers with

real-time emulated user activities.

In summary, we make the following contributions:

• We propose a real-time application-level user behavior

emulation framework to enhance the honeypot fidelity

and deceive sophisticated attackers.

• Our design can achieve both authenticity and concealment

by emulating GUI-based user behaviors with computer

vision techniques through remote desktop connections.

• We implement a prototype of HoneyMustard and evaluate

its deception capability via both user study and perfor-

mance measurement.

II. THREAT MODEL AND ASSUMPTION

We focus on defeating the honeypot detection methods by

checking GUI-based user behaviors. In practice, real users

usually interact with computers via GUI interfaces, so the

lack of user behaviors has been used as an obvious feature

in honeypot detection. In other words, the attackers expect to

observe GUI-based user behaviors in the compromised system;

otherwise, it could be a honeypot.

We assume the sophisticated attackers (e.g., APT) have

gained the root privilege of the compromised computer to

better dwell in the compromised system and stealthily collect

sensitive information. We assume that attackers can monitor

the GUI desktops and all user operations on the GUI interfaces

via periodically taking screenshots or direct remote desktop

connections (e.g., RDP, VNC). Moreover, with the root priv-

ilege, the attackers may scan the entire system to detect the
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Figure 1. The Overview of HoneyMustard.

honeypot emulators in the compromised systems. By observ-

ing user activities and analyzing the activity logic, attackers

aim to decide if the compromised system is a honeypot. To

maintain stealthiness, attackers would avoid direct interaction

with the real users or interference with the user operations.

III. SYSTEM DESIGN

A. Overview of HoneyMustard

We propose the HoneyMustard framework to enhance hon-

eypot fidelity with the following three design principles.

• Stealthiness. The emulator trace is invisible in the honeypot.

• Authenticity. The emulated user activities have the same

logic as those of real users.

• Real Time. It can emulate user activities in real time.

Figure 1 shows that HoneyMustard consists of two core

components: collected user operations and the emulator. Both

of them are deployed in an independent device other than the

honeypot. The emulator connects to the honeypot via a remote

desktop connection and leverages computer vision techniques

to redo the collected user operations on the GUI interfaces.

Attackers can only notice the existence of a remote desktop

connection in the compromised system, not the emulator. With

the usage of cloud services, more companies and organizations

deploy their working platforms in the cloud and allow employ-

ees to access virtual desktops via remote connections; hence,

attackers cannot simply take the remote desktop connection

as an indicator of an emulator. Therefore, the remote desktop

connection enhances the system’s stealthiness. We collect

the GUI-related user operations from real users to ensure

the system’s authenticity. To achieve real-time performance,

HoneyMustard emulates different user activities periodically.

B. User Behavior Emulation

Figure 2 shows the workflow of HoneyMustard, which

contains two stages: user operation collection and computer
vision-based emulation.

1) User Operations Collection: Intuitively, it is convenient

to collect a large number of user operations from the daily

activities of real users. However, to protect users’ privacy,

the private information contained in daily activities should

be eliminated. In this stage, we construct the user operation

dataset with two types of data sources, namely, real user

activities and user manuals. To collect from real user activities,

we invite real users to complete assigned tasks without using

their personal information (decoy information is allowed). To

collect from user manuals, we download the user manuals for

completing specific application tasks and extract the logical

user operations. Since the manual contributors (e.g., software

vendors) have sanitized the content, no private information

remains in the user manuals.

User Activity Processing. We invite users to complete specific

basic tasks on common applications, each task containing

multiple essential operations. Meanwhile, we leverage a GUI

recorder to record each step conducted by users over the

GUI interface. For each task, we convert user operations to

a manipulation log, which contains the actions (e.g., mouse

click, input) and the GUI elements (e.g., button, check box).

User Manual Processing. First, we leverage a user manual

normalizer to convert various manual formats to the normal-

ized Markdown format, which can facilitate the parser to ana-

lyze the manual content [7]. Similar to the manipulation logs,

the Markdown-formatted user manuals preserve the actions

and GUI elements. Second, for each task, an action extractor

generates an action list from descriptive text to preserve the

operation logic. The action list contains action keywords (e.g.,

click, select, type) and the target objects (e.g., GUI elements,

text). Finally, we build the dataset for user activity emulation

by aggregating all the action lists.

2) Computer Vision-based Emulation: During user activity

emulation, HoneyMustard picks up a desired task (i.e., action

list) from the dataset and emulates actions over the honeypot.

To emulate a logical application usage sequence, we also

consider the work hours and break times. For each task,

HoneyMustard converts the action list to an enriched action

code, which makes the actions executable for the emulator.

The action code converter also introduces more action details

that are not provided by user manuals. To enrich the action

code, the converter completes the following tasks:

Action Keyword Conversion. The action keywords in the

action list should be converted to emulator-readable keywords.

Because some descriptive action keywords are not available in

the emulator and should be represented as specialized action

keywords, this step ensures the emulator can read and execute

the action keywords in the code.

Waiting Time Addition. HoneyMustard adds extra waiting

time slots among consecutive actions because real users always

pause for a while between two consecutive operations. To

increase system authenticity, the waiting time can reflect the

user’s thinking time or encountered disturbance. Also, there is

a processing time between two consecutive actions so that the

software can switch status or interface to receive the following

actions. Therefore, we add the waiting time slots with random

numbers, which are decided by the emulation environment

performance and software response speed.

Image Path Addition. The image paths of pre-collected GUI

elements should be added to the code because the emulator

needs to identify the corresponding GUI elements on screen

via computer vision techniques. For the target objects in the

action list, the converter can easily access the GUI element

images and add their paths to the code. However, some icon-

based GUI elements do not present descriptive text on the

screen. In this case, we collect these GUI elements as pre-

knowledge data and link them to the object names.

Action Parameter Addition. Some actions need additional

parameters, e.g., asking users to fill in usernames or emails.

For the action lists collected from real user activities, we have
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Figure 2. The Workflow of HoneyMustard.

already provided decoy information. For the action lists col-

lected from user manuals, we use default or decoy information.

With the enriched action code, HoneyMustard can emulate

the operations of input peripherals over the software/system

interfaces. The action emulator first leverages computer vision

techniques to locate the target objects (i.e., images, text) on

the screen. For images, the emulator locates the corresponding

GUI elements by template matching. For text, the emulator

locates the matching text by optical character recognition

(OCR). After obtaining the actions and target objects, the

emulator can sequentially execute the action code on the

honeypot via a remote desktop connection.

IV. IMPLEMENTATION

A prototype of HoneyMustard is built on a Linux host. We

use a honeypot in Windows 10 with UltraVNC server 1.3.2a,

connecting to the emulator via a VNC connection.

A. User Operations Collection

1) GUI recorder: We use WinAppDriver [8] as the GUI

recorder, which tracks both keyboard and mouse interactions

over application interfaces, i.e., GUI actions. The record logs

include the GUI actions and the involved GUI elements.

2) Manual Normalizer: We use pandoc 2.5 [9] to convert

user manuals in various formats (e.g., HTML, DOCX, EPUB)

to the Markdown format. For the manuals in other formats,

we can use the corresponding Markdown format converters.

3) Action Extractor: The action extractor, which is devel-

oped in Python 3, obtains the action lists from the descriptive

instructions in manipulation logs and Markdown-formatted

manuals. The basic idea of the action extractor is to iden-

tify the pre-defined keywords in the instructions. However,

not each matched keyword represents an action. A matched

keyword can indicate an action only if it is a verb, e.g., the

keyword “Input” can appear as a noun or a verb in a manual

while only the verb-form “Input” can indicate an action. Thus,

we identify the word classes by lexical category analysis. With

the NLTK [10], the action extractor splits the instructions into

word tokens and then attaches the class tag to each word.

With the action keywords, the action extractor will obtain

the involved target objects, typically a noun or a short phrase.

The action extractor identifies the target objects by conducting

a forward search of nouns from the identified action keyword

to the next one or to the end of the current sentence. Note

that some identified action keywords may not even have target

objects. Besides, the target objects can be located via symbols,

e.g., quotation marks and asterisks. Our action extractor can

also identify these target objects, which usually appear in the

descriptive sentences of system configuration manuals.

B. Computer Vision-based Emulation

1) Action Code Converter: The action converter transforms

the action list into the Robot Framework code, which has easy-

to-use tabular test data syntax and utilizes the keyword-driven

testing approach. The Robot Framework code can ensure the

action converter is simple and effective. The action converter

translates the action records into the test cases in sequence,

takes action keywords as the code keywords, and transforms

the target object information as the code parameters.

2) Action Emulator: The action emulator consists of Robot
Framework 4.1 [11] and Sikuli 2.0.5 [12]. Robot Framework

is a Python-based, extensible, and keyword-driven automation

framework, with various generic and custom libraries. We

use the Sikuli library of Robot Framework to manipulate the

GUI elements on the screen. Sikuli uses image recognition

algorithms powered by OpenCV to identify GUI elements and

uses OCR to identify text.

V. EVALUATION

HoneyMustard is running on an Ubuntu 20.04 (kernel ver-

sion 5.4.0) device with Intel Xeon E5-2620 CPU @ 2.40GHz

and 16 GB RAM. The honeypot is a Windows 10 device with

an Intel Core i7-6500U CPU @ 25.0GHz and 8 GB memory.

A. Deception Effectiveness

1) Study design: To evaluate the deception effectiveness of

HoneyMustard, we conduct a user study to check if humans

can distinguish the emulated user activities from the real ones.

To simulate the real-time environments, we record the user

activities in videos. After watching the videos, the participants

need to decide if the activities are conducted by real humans.

Considering that real attackers are more sensitive than normal

participants, we also provide videos of real user activities as a

baseline, which can assist participants to notice the differences

in activities. We collect the subjective and direct feelings

from participants with an online survey via the crowdsourcing

platform - Amazon Mechanical Turk [13]. We totally received

100 unique responses from anonymous users. We check the

response patterns manually to confirm there is no malicious

filling on the questionnaire.

Materials. We select five common tasks for the user study, in-

cluding OpenVPN installation (T1), LibreOffice Marco editing

(T2), Adobe Reader trust configuration (T3), windows system

environment setting (T4), and windows network discovery

configuration (T5). The involved manuals are downloaded

from the knowledge platform - Dummies [14] and the tech-

nique blog - Twilio Blog [15]. On average, it takes 10 steps

to complete the tasks. For each task, a video is generated for
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Figure 3. Results of the Activities Identification Survey.

emulated and real user activities, respectively. To generate the

videos of emulated user activities, HoneyMustard converts the

user manuals to emulated user operations on the honeypot. To

generate the videos of real user activities, we manually conduct

the same tasks by ourselves and record the videos. Since all

the data is collected from the authors and public user manuals,

IRB approval is not required in our experiments.

Procedure. Each participant needs to watch ten videos of

five tasks and then answer five questions to indicate which

videos may contain emulated user activities. Each question

provides three choices: video A (real user activities), video B
(emulated user activities), and uncertain. We set the maximum

completion time of the questionnaire as 30 minutes.

2) Results: Figure 3 shows participants cannot accurately

identify the emulated user activities. Since only video B in

each task contains emulated user activities, the average recog-

nition accuracy is 29.2%. On average, 32.2% of participants

select the wrong videos, and 39.6% of participants cannot

make their decision. The deception success rate is 71.8%,

showing HoneyMustard’s effectiveness in deceiving attackers.

We find the deception success rate varies among different

tasks. The success rate is higher in software manipulation

activities (77% for T1, 76% for T2, 70% for T3) than system

configuration activities (65% for T4, 66% for T5). That is

because software manipulation activities are relatively more

complicated and contain more mouse/keyboard operations.

From the participants’ comments, they mainly observe the

cursor movement and cannot find out any logical issues in

these videos. Also, participants tend to select videos with

more mechanical and faster cursor movement. These criteria

are critical for improving our future design.

In practice, the VNC connection can introduce network de-

lay. Because the action emulator manipulates the GUI interface

projected to the local, the network delay only influences the

response time. Real users confront the same issue when using a

VNC connection, so the attackers cannot leverage the network

delay to identify the emulated user activities.

B. System Overhead

We measure the average memory consumption and CPU

usage for processing the user manuals of these five tasks. The

action extractor takes about 190 MB of memory and 12%

CPU usage. The action code converter takes about 35 MB

of memory and less than 1% CPU usage. Because we do

not modify the third-party tools, their system overhead can

be found in the related official documents. The experiment

results show that HoneyMustard can be readily deployed in

the real world without excessive performance overhead.

VI. DISCUSSION AND FUTURE WORK

Our current solution inserts a random waiting time slot

between operations to emulate a real user. However, a real

user usually has a specific operation pattern in the waiting

time slots. This pattern is decided by the activity type, per-

sonal character, and job type. From a long-term observation,

sophisticated attackers can usually extract an access pattern of

waiting slots from real users, while the randomly generated

waiting time slot cannot provide a fixed pattern. In this case,

attackers may detect the emulated user activities. In future

work, we plan to create various user profiles to increase

the success rate of deception. Based on the various profiles,

HoneyMustard can insert specific patterned waiting time slots

to impersonate different types of real users. Besides, the cursor

movement speed should also adapt to different user profiles.

VII. RELATED WORK

Honeypot Detection. Honeypot detection methods focus on

the artifacts in two major categories: network-related finger-
printing and system-related fingerprinting [16], [17]. Network-

related fingerprinting is to detect the discrepancy in network

activities [18] and network latency [19]. System-related finger-

printing is to detect the setup differences in operating systems

or applications, e.g., files, operating system flags, running pro-

cesses, volatile user information, and installed programs [20]–

[22]. Besides, attackers can detect user activities in systems,

e.g., the “wear and tear” artifacts [3] or mouse clicks [4].

User Emulation. User emulation is an effective method to

counter honeypot detection. To defeat network-related detec-

tion, defenders can emulate the network traffic [23], [24]

or reproduce real traffic [25]–[27], To defeat system-related

detection, defenders can generate usage artifacts [6] or emu-

late application usage sequence [5]. However, none of them

propose a real-time application-level emulation solution.

VIII. CONCLUSION

This paper presents HoneyMustard, an application-level

real-time user behavior emulation framework to enhance the

fidelity of honeypot systems. We construct an action dataset

by collecting logical user operation sequences of various ap-

plications from real user activities and user manuals. Then, we

leverage computer vision techniques to emulate user activities

in the honeypot. With the VNC connection, HoneyMustard re-

motely manipulates the GUI interface of the honeypot without

deploying any extra suspicious agent in the honeypot. Mean-

while, the emulated user activities can be observed directly

by attackers. We implement a prototype of HoneyMustard

and conduct an online survey with 100 participants. The

experimental results show that HoneyMustard can effectively

deceive attackers with real-time emulated user activities.
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