
PatchDB: A Large-Scale Security Patch Dataset

Xinda Wang†, Shu Wang†, Pengbin Feng∗, Kun Sun, Sushil Jajodia
Center for Secure Information Systems, George Mason University, Fairfax, VA, USA

{xwang44, swang47, pfeng4, ksun3, jajodia}@gmu.edu

Abstract—Security patches, embedding both vulnerable code
and the corresponding fixes, are of great significance to vulnera-
bility detection and software maintenance. However, the existing
patch datasets suffer from insufficient samples and low varieties.
In this paper, we construct a large-scale patch dataset called
PatchDB that consists of three components, namely, NVD-based
dataset, wild-based dataset, and synthetic dataset. The NVD-
based dataset is extracted from the patch hyperlinks indexed
by the NVD. The wild-based dataset includes security patches
that we collect from the commits on GitHub. To improve the
efficiency of data collection and reduce the effort on manual
verification, we develop a new nearest link search method to help
find the most promising security patch candidates. Moreover,
we provide a synthetic dataset that uses a new oversampling
method to synthesize patches at the source code level by enriching
the control flow variants of original patches. We conduct a
set of studies to investigate the effectiveness of the proposed
algorithms and evaluate the properties of the collected dataset.
The experimental results show that PatchDB can help improve
the performance of security patch identification.

Index Terms—security patch, open source software, dataset

I. INTRODUCTION

A security patch is a set of changes on source code to fix

the vulnerability. Both vulnerable code and the corresponding

fixes are embedded in security patches. Compared to non-

security patches (e.g., performance bug fixes and new fea-

tures), security-related patches usually take higher precedence

to be applied. Hence, security patch identification plays a

significant role in security research, especially in vulnerability

mitigation and software maintenance. The verified security

patches can be used to generate signatures for detecting more

vulnerabilities or patch presence [17], [36], [40].

A straightforward method to identify security patches is to

analyze the literal descriptions (e.g., bug reports and commit

messages) using text-mining techniques [15], [16], [26], [43].

However, such identification methods are error-prone due to

the poor quality of the textual information. For instance,

61% of security patches for the Linux kernel do not mention

security impacts in their description or subjects [35]. Instead,

other techniques go a further step by analyzing the source

code of security patches [29], [39], [42]. Nevertheless, this

process requires considerable human effort and expertise.

Although some automatic security patch identification tools

have been proposed [31]–[33], they suffer from performance

and generalization issues.

There is an increasing demand for the deployment of a

robust classifier (e.g., deep learning model). To achieve this

†The first two authors contributed equally to this work.
∗Corresponding author: Pengbin Feng

goal, one of the biggest challenges is the lack of sufficient

patch samples in the model learning and testing stages. Most

of the existing patch datasets [18], [20]–[22], [36] have several

limitations. First, the number of publicly available security

patches is not large enough to train the model. Second, those

security patches are collected from single or several specific

software repositories, leading to biases towards certain types

of software and vulnerabilities. Finally, they focus on specific

types of security patches (e.g., patches of sanity testing), which

limits the generalization capability of the learned models. As a

result, all these existing public datasets fail to involve complex

and variant patches for learning a general classifier. Also, the

empirical study over those patch datasets may be biased.

In this paper, we construct a large-scale patch dataset called

PatchDB that contains a large number of security patches

and non-security patches in C/C++ languages. It consists

of three datasets, namely, NVD-based dataset, wild-based
dataset, and synthetic dataset. PatchDB not only contains the

verified security patches indexed by the National Vulnerability

Database (NVD) [5] but also includes a large number of

patches obtained from the wild. Moreover, to enrich the

patch variants, PatchDB also provides an additional synthetic

patch dataset that is automatically generated from the existing

samples via a new patch oversampling technique. In contrast,

we call the patches in both the NVD-based dataset and the

wild-based dataset as natural patches.

We first construct the NVD-based dataset based on the

NVD, the largest known source for extracting security

patches [20]. In this dataset, around 4K security patches are

collected by crawling reference hyperlinks provided by the

NVD. Note that we focus on the patches in C/C++ projects that

have the largest number of vulnerabilities. The NVD-based

dataset contains many samples of typical severe vulnerabilities,

which are useful for security patch studies.

The patches in the wild-based dataset are collected from

the commits on GitHub. It is well known that around 6-10%

of commits are security patches that are not reported to the

NVD [20], [32]; however, it is time consuming and labor

intensive to manually check if each commit is security-related.

Based on the assumption that in the feature space, the closer a

commit sample is to a verified security patch, the more likely it

is a security one, we develop a nearest link search algorithm to

find an equal number of candidates from the GitHub commits

that are closest to the security patches in the NVD-based

dataset. Then, each candidate is manually verified as either a

security patch or non-security patch by three security experts

who cross-check their decisions. After five rounds of this

149

2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

978-1-6654-3572-7/21/$31.00 ©2021 IEEE
DOI 10.1109/DSN48987.2021.00030

20
21

 5
1s

t A
nn

ua
l I

EE
E/

IF
IP

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

ep
en

da
bl

e
Sy

st
em

s a
nd

 N
et

w
or

ks
 (D

SN
) |

 9
78

-1
-6

65
4-

35
72

-7
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

SN
48

98
7.

20
21

.0
00

30

Authorized licensed use limited to: George Mason University. Downloaded on October 02,2021 at 21:46:24 UTC from IEEE Xplore. Restrictions apply.

data augmentation process, we finally collect 8K new security

patches and 23K cleaned non-security patches in the wild-

based dataset. Our experiments show that the proportion of

security patches in the candidates identified by the nearest link

search algorithm is around 30%, which is three times better

than the brute force search (i.e., 6-10%).

PatchDB also provides a synthetic patch dataset, which

is generated based on the above two natural datasets. It is

inspired by the fact that some vulnerability detection studies

use artificial vulnerabilities (e.g., SARD [8]) to train their

deep learning-based models due to the limited vulnerable code

gadgets [22], [23]. Similarly, patch synthesis could be a useful

approach to help improve the security patch identification

or analysis. However, there is no synthetic patch dataset or

patch synthesis algorithm publicly available. Therefore, we

further develop an oversampling method to synthesize patches.

Different from traditional oversampling techniques [11] that

only synthesize instances in the feature space, our method

generates a set of synthetic patches by modifying the critical

statements at the source code level. Since around 70% security

patches involve modifications of conditional statements (i.e.,

if statements) [24], we focus on enriching the control flow

variants of original patches. Specifically, we design eight

variants for if statements without affecting the original

program functionality. We develop a tool to automatically

synthesize patches based on these variants. The experimental

results show that synthesizing patches for a limited-size dataset

could improve the performance of automatic security patch

identification.

Overall, our PatchDB dataset has the following distinctive

features: 1) it is a large-scale security patch dataset that

contains 12K natural security patches, where 4K are from the

NVD-based dataset and 8K are from the wild-based dataset;

2) it covers various types of security patches in terms of code

changes; 3) it provides a cleaned non-security patch dataset

of 23K instances; 4) it provides a synthetic dataset where

the patches are synthesized from the NVD-based dataset and

wild-based dataset; and 5) each natural patch is accessible
on GitHub for further context information. As far as we

know, PatchDB is the largest dataset that contains NVD-based,

wild-based, and synthetic security patches. Also, we find the

8K security patches in the wild-based dataset are silently

published, i.e., not listed in any CVE entries.

Moreover, we conduct a set of experimental studies on

the composition and quality of PatchDB as well as the

effectiveness of our proposed algorithms. We first show that

nearest link search can help dramatically reduce human ef-

forts on identifying security patches from the wild. Also, a

larger search range (i.e., more unlabeled GitHub commits)

can increase the identification efficiency. Second, our dataset

augmentation method outperforms state-of-the-art machine

learning techniques by providing better tolerance to the dis-

tribution discrepancy between the NVD and the wild patches.

Third, our experimental results show that synthetic patches

can effectively increase the complexity and variance of a

limited-size dataset. Moreover, we further study the dataset

composition by classifying security patches into multiple cat-

egories in terms of code changes. The categorization results

of the NVD-based dataset exhibit a long tail distribution with

the high imbalance and our dataset augmentation approach

can alleviate the imbalance by introducing more instances

in the tail. Finally, we verify the usefulness of PatchDB by

showing that the performance of automatic patch analysis can

be improved by adopting the large-scale PatchDB.

In summary, we make the following contributions:

• We construct a large-scale patch dataset called PatchDB

that includes the NVD-based dataset, wild-based dataset,

and synthetic dataset. To the best of our knowledge, we

are the first to collect and release a diverse set of patches

at this scale1.

• We develop a dataset augmentation scheme by finding

the most promising security patch candidates using a

new nearest link search algorithm, which can achieve

better performance than the state-of-the-art approaches

by reducing around 66% efforts on human verification.

• We propose a new oversampling technique to synthesize

patches at the source code level. The experimental results

show that synthetic patches are effective for automatic

patch analysis tasks.

• We conduct an empirical study on PatchDB by catego-

rizing security patches based on their code changes. We

also assess the dataset quality and obtain some interesting

observations.

II. BACKGROUND

In this section, we give the definition of software patches

and illustrate the differences between security and non-security

patches. We also introduce the NVD, which is a reliable

repository for us to extract security patches.

A. Security and Non-Security Patches

A software patch is a set of changes between two versions

of source code to improve security, resolve functionality

issues, and add new features. Security patches address specific

security vulnerabilities, enhancing the security of the software.

Non-security patches include bug fix patches and new feature

patches. The bug fix patches make the software run more

smoothly and reduce the likelihood of a crash by correcting

the software bugs. The new feature patches add new or update

existing functionality to the software.

On the version control platform like GitHub [3], a commit

can be regarded as a patch. Listing 1 and 2 show an example

of security patch and non-security patch downloaded from

GitHub, respectively. Each patch is identified by a 20-byte

long hash string and the modified file will be recognized by

a line starting with diff --git. The consecutive removed and

added statements (i.e., lines start with - or +) in one patch are

called one hunk. Around the hunk, there are typically several

context lines. One patch may contain more than one hunk over

multiple functions and files. Listing 1 is a security patch for

1The dataset is available at https://github.com/SunLab-GMU/PatchDB.

150

Authorized licensed use limited to: George Mason University. Downloaded on October 02,2021 at 21:46:24 UTC from IEEE Xplore. Restrictions apply.

1 commit b84c2cab55948a5ee70860779b2640913e3ee1ed
2 diff --git a/src/bits.c b/src/bits.c
3 index 014b04fe4..a3692bdc6 100644
4 --- a/src/bits.c
5 +++ b/src/bits.c
6 @@ -953,7 +953,7 @@ bit_write_UMC (Bit_Chain *dat,

BITCODE_UMC val)
7 if (byte[i] & 0x7f)
8 break;
9

10 - if (byte[i] & 0x40)
11 + if (byte[i] & 0x40 && i > 0)
12 i--;
13 byte[i] &= 0x7f;
14 for (j = 4; j >= i; j--)
15 }

Listing 1: An example of security patch for a stack

underflow vulnerability (CVE-2019-20912).

1 commit c3b3c274cf7911121f84746cd80a152455f7ec97
2 diff --git a/main.c b/main.c
3 index 6a3eee2eb..b8ad59018 100644
4 --- a/main.c
5 +++ b/main.c
6 @@ -575,5 +575,8 @@ finish:
7
8 dbus_shutdown();
9

10 + if (getpid() == 1)
11 + freeze();
12 +
13 return retval;
14 }
15
16 }

Listing 2: An example of non-security patch in systemd.

vulnerability CVE-2019-2091 that prevents stack underflow in

the function bit_write_UMC (as identified in Line 6) by

replacing the previous incomplete check (Line 10) with one

more sanity check for the local variable i (Line 11), which

is used as an index to access the array byte (Line 13). By

adding a check of pid, the non-security patch in Listing 2

only freezes the init process (Line 10-12) but exits all other

processes, avoiding a potential crash.

B. NVD

The National Vulnerability Database (NVD) [5] is the

largest publicly available source of vulnerability intelligence

maintained by the U.S. National Institute of Standards and

Technology (NIST). Besides synchronizing with the Common

Vulnerabilities and Exposures (CVE) system [2] where a CVE-

ID is assigned to each vulnerability, the NVD provides en-

hanced information such as patch availability, severity scores,

and impact ratings. For each CVE entry, the NVD provides

external reference URLs of advisories, solutions, tools, etc.

Among them, security patches for the current vulnerability

could be extracted from a hyperlink tagged with “patch” (if

any). By crawling such hyperlinks, it is possible to extract

security patches and even access the corresponding source

code repositories. However, due to the limited human power

supporting the NVD, the patch information may not be avail-

able or accurate, and some CVE entries in the NVD are not

provided with any links for the patch.

Since not all known vulnerabilities are reported to the CVE

or accepted by the CVE Numbering Authorities (CNAs) [22],

[32], [37], the security patches of those vulnerabilities cannot

be retrieved from the NVD. On the other side, it also means

that there exist a number of security patches in the wild that

can be used to enlarge the security patch dataset.

III. METHODOLOGY

Figure 1 shows the methodology of constructing the

PatchDB, which consists of three components, namely, NVD-
based patch dataset, wild-based patch dataset, and synthetic
patch dataset. First, we build an initial security patch dataset

by crawling the NVD entries that have corresponding patch

hyperlinks. Since the number of NVD security patches (around

4K) is not large enough to train a robust classifier (e.g.,

deep learning models), we develop a novel augmentation

approach named nearest link search to help increase the

efficiency of discovering security patches from the wild (i.e.,

GitHub). Moreover, we propose a new oversampling method

to synthesize security patches at the source code level.

NVD-based
patches

Wild-based
patches

(3
) o

ve
rs

am
pl

in
g

(2
) a

ug
m

en
ta

tio
nGitHub

commits

Synthetic
patches (1

) c
ra

w
l

Fig. 1: PatchDB construction methodology.

A. Extracting Security Patches from the NVD

The first step of constructing PatchDB is to collect and

screen the security patches that have already been indexed by

the NVD. As the largest publicly available source of vulner-

ability intelligence, the NVD provides pertinent hyperlinks of

corresponding patches for a portion of the CVE entries. We

focus on the software repositories hosted on GitHub, where

each patch (commit) is identified with a unique hash value.

We observe that the URLs of these patches are usually in

this form: https://github.com/{owner}/{repo}/commit/{hash}.
By downloading all these links with a suffix .patch, we can

obtain thousands of security patches associated with CVE IDs.

We focus on patches of projects written in C/C++ that are the

languages with the highest number of vulnerabilities [34].

However, the patches of C/C++ projects may contain mod-

ifications on files such as .changelog, .kconfig, .sh, .phpt,
etc. After manually checking a random subset of them, we

find most of these non-C/C++ files are documentations or

changes corresponding to modifications of C/C++ files (.c,

.cpp, .h, and .hpp) and they do not play an important role in

fixing vulnerabilities. Therefore, we need to remove these non-

C/C++ parts from patches. In this way, we obtain a dataset of

4076 security patches from 313 GitHub repositories between

1999 and 2019, which is by far the largest security patches in

C/C++ collected from the NVD2.

2The 4K security patches collected by other work [20] contain multiple
types of programming languages and the dataset is not publicly available.

151

Authorized licensed use limited to: George Mason University. Downloaded on October 02,2021 at 21:46:24 UTC from IEEE Xplore. Restrictions apply.

We also need to collect a dataset of non-security patches,

which is useful to develop and evaluate a machine learning

model to identify security patches. We first download these

313 GitHub repositories whose patch information is available

in the NVD. Then we acquire all the commits with the com-

mand git log. However, we cannot assume all these commits

except the above 4076 security patches would be cleaned

non-security patches. Actually, after reviewing some random

subsets of those commits, we observe that around 6-10%

of them are security patches, which is consistent with some

previous studies [20], [22], [32]. Inspired by the existence of

those silent security patches (i.e., patches not reported to CVE)

in the wild, we consider commits on GitHub as a good source

to enlarge the security patches in the NVD-based dataset.

B. Augmenting Patch Dataset via Nearest Link Search
Though we find 6-10% of patches in the wild are security

patches, it is still labor-intensive and lacks the efficiency to

manually screen out these security patches. To reduce the

search range of potential candidates, we develop a dataset

augmentation method to help find the most likely security

patch candidates from the wild patches. The benefit of our

method is twofold. First, we can enlarge the security patch

dataset. Second, we can clean the hidden security patches from

the non-security patch dataset.

NonSecP.Candidates SecP.

Security PatchesSecurity Patches

Wild Patches
Wild Patches

Security Patches

Wild Patches

N
ea

re
st

 li
nk

 se
ar

ch

if (R > TH)
Exityes no

M
an

ua
lly

 v
er

ify

Fig. 2: The overview of security patch dataset augmentation

(the candidates are selected from wild patches and would be

verified manually by the professional security researchers).

Overview of Dataset Augmentation. Figure 2 shows our

dataset augmentation scheme, which consists of three steps:

candidate selection, manual verification, and loop judgment.
First, we propose a nearest link search algorithm to better

select security patch candidates from the wild using the

features derived from already labeled security patches in our

NVD-based dataset. The algorithm selects the candidate set

that has the global minimal distance with the set of verified

security patches in the feature space. It is based on one

observation that the closer a sample is to a verified security

patch sample, the more likely it is a security patch.
Second, these candidates will be manually verified by

professional security researchers. Since the nearest link search

algorithm can narrow down the promising candidates to be

verified, the labor costs would be reduced dramatically.
Finally, we evaluate the proportion R of security patches

in the candidates and repeat the above procedures with the

enlarged security patch dataset if R is larger than a thresh-

old, where the proportion R implies ample security patches

TABLE I: List of features for nearest link search.

No. Feature Descriptions

1 # changed lines
2 # hunks
3-6 # added/removed/total/net lines
7-10 # added/removed/total/net characters
11-14 # added/removed/total/net if statements
15-18 # added/removed/total/net loops
19-22 # added/removed/total/net function calls
23-26 # added/removed/total/net arithmetic operators
27-30 # added/removed/total/net relation operators
31-34 # added/removed/total/net logical operators
35-38 # added/removed/total/net bitwise operators
39-42 # added/removed/total/net memory operators
43-46 # added/removed/total/net variables
47-48 # total/net modified functions

49-51 mean/min/max Levenshtein distance within hunks†
52-54 mean/min/max Levenshtein distance within hunks�

55 # same hunks†
56 # same hunks�

57-58 # and % of affected files
59-60 # and % of affected functions

† Before token abstraction. � After token abstraction.

remaining in the wild set. When R drops below a threshold,

we exit the dataset augmentation process.

Algorithm of Nearest Link Search. Now we detail the nearest

link search algorithm, which is the core of our method. Given a

set of security patches, the algorithm can find an equal number

of candidates from the wild dataset in three steps: feature
space construction, weighted distance matrix calculation, and

nearest link optimization.

1) Feature Space Construction: The feature space is con-

structed based on the syntactic features extracted from the

source code of patches. These features, e.g., the conditional

statement amount and loop statement amount, can reveal the

differences between security patches and non-security patches.

Our hypothesis is that the patches with similar syntactic

features tend to have similar properties and semantics.

Table I lists 60 types of features used in our feature

space construction. These features can be divided into three

types. Features 1-10 are basic patch features that indicate

the text-level changes. Features 11-56 indicate the changes in

the programming language level that are language-dependent.

Features 57-60 reveal the affected range by the patch. Since

the patch is not a complete program unit and contains both

pre-patched and post-patched code, we implement a parser

to extract these features using Python. For both the security

patches and wild patches, the 60-dimensional features are

extracted to construct the feature space for further processing.

2) Weighted Distance Matrix: The similarity of the two

patches is represented as the distance of corresponding features

in the feature space. However, since the extracted features

have different scales in different dimensions, it is necessary

to normalize each dimension in features with an appropriate

weight. For the j-th feature in the i-th patch, we normalize

the feature aij as

a′ij = aij · wj = aij · 1

max|aj | ,

152

Authorized licensed use limited to: George Mason University. Downloaded on October 02,2021 at 21:46:24 UTC from IEEE Xplore. Restrictions apply.

wild patch (unlabeled)

security patch candidate

(1) Initial state (2) Nearest link search (3) Manual verification

non-security patch

?

?

?

?

?

?

?

Fig. 3: The nearest link search and candidate verification.

where wj is the weight for the j-th feature, aj is the vector

that refers to the j-th features of all patches. The normalized

features would be in the range of −1 to 1 after the weighting

so that the distances in different dimensions can be comparable

and the information of net values for some features (e.g., net

modified functions) will be reserved.

Then, we can calculate the Euclidean distance dmn between

the m-th security patch and the n-th wild patch, so as to build

a weighted distance matrix D = {dmn}M×N , where M and

N refer to the security patch number and wild patch number.

3) Nearest Link Optimization: The goal of the nearest link

search is to find a wild patch for each verified security patch so

that the total distance of all pairs would be a minimum. A pair

of one security and one non-security patch is also called a link,

which presents the selected wild patch has a high similarity

with the verified security patch. Thus, the set of the selected

wild patches becomes our candidate set. Because one wild

patch can only be linked to up to one security patch, the size

of the candidate patches is the same as the size of the verified

security patches.

As shown in Figure 3, the candidate patches are a set

of patches located by the nearest link and they have simi-

lar features with verified security patches. Therefore, these

candidates have a higher probability of being verified as

security patches compared with other wild patches. After

human verification, some candidates would be labeled as a

security patch and added to the existing security patch dataset.

Other candidates would be added to the non-security patch

dataset. In other words, the size of the verified security patches

will keep increasing when new security patches are identified

from the wild. If a candidate is verified as a non-security patch,

this instance could also increase the discernible capability of

the patch classifier near the decision boundary. That is because

this patch link crosses the decision boundary and reveals the

data distribution around the region as well.

To compute the nearest link, we convert the candidate search

problem into an optimization problem. The optimization ob-

jective is to minimize the sum of the distances in each link,

as shown in the following formula:

min

M∑

m=1

dmcm , s.t. cm ∈ Z ∩ [1, N], c1 �= c2 �= .. �= cM .

where dmcm refers to the distance of the m-th patch link, and

cm is the index of the wild patch that is linked to the m-th

verified security patch. The optimization problem is to obtain

the set {cm}Mm=1 with M different elements to minimize

the total link distance. It is similar to the Kuhn–Munkres

(KM) algorithm [12] that seeks the combinatorial optimization

in the assignment problem, hence it is hard to find the

globally optimal solutions. To solve this problem, we adopt

an approximately optimal solution with a greedy algorithm.

The algorithm is illustrated in Algorithm 1, where the time

complexity is O(MN2). Note that our nearest link search

is different from the k-nearest neighbors (KNN) algorithm

where K candidates will be selected according to one verified

sample and one candidate may be assigned to multiple verified

samples even if K = 1. In the nearest link, each candidate can

only be selected at most once, and each selected candidate will

be paired with one individual verified sample.

C. Generating Synthetic Dataset via Oversampling

It is known that when developing learning based patch

analysis models, the training phase may face two challenges,

namely, the model over-fitting problem due to insufficient

Algorithm 1 The Nearest Link Search Algorithm

Input: the weighted distance matrix D = {dmn}M×N

Output: the index set for selected wild patches {cm}Mm=1

1: / ∗ init the minimum index ∗ /
2: U = {u1, u2, ..., uM}, um = min{dmn}Nn=1

3: V = {v1, v2, ..., vM}, vm = argminn{dmn}Nn=1

4: / ∗ find the index ∗ /
5: C = {c1 = 0, c2 = 0, ..., cM = 0}
6: for i← 1 to M do
7: m0 ← argmin U
8: n0 ← vm0

9: / ∗ if n0 has been used ∗ /
10: if n0 ∈ C then
11: l = {dm0n}Nn=1

12: for j ← 1 to M do
13: if cj �= 0 then
14: lcj ← inf

15: n0 ← argmin l

16: cm0
← n0

17: um0
← inf

18: output C

153

Authorized licensed use limited to: George Mason University. Downloaded on October 02,2021 at 21:46:24 UTC from IEEE Xplore. Restrictions apply.

BEFORE

Source Code
BEFORE BEFORE BEFORE

LLVM Search Modify

Abstract
Syntax Tree

IF Statements
Involved in Patches

Source Code

Patches

AFTER AFTER AFTER AFTER

LLVM Search Modify

Patches

NE
W!

NE
W!

NEW!

�

�

�

�

�

�

IF Statements
Involved in Patches

Source CodeSource Code Abstract
Syntax Tree

Source Code Abstract
Syntax Tree

IF Statements
Involved in Patches

Source Code

Source Code Abstract
Syntax Tree

IF Statements
Involved in Patches

Source Code

Patches Patches

Fig. 4: The overview of oversampling at source code level.

training instances and the misleading fortuitous patterns. To

alleviate these problems, some artificial code gadget datasets

(e.g., SARD [8]) are adopted during the training [22], [23].

However, since patches are not complete program units and

contain both pre-patched and post-patched code at the same

time, previous code synthesis algorithm [10] cannot be ap-

plied to create artificial patches. Therefore, we propose a

new oversampling algorithm to generate artificial patches at

the source code level, which is different from traditional

oversampling [11] that synthesizes instances in the feature

space. We provide more interpretability since vector instances

generated by traditional methods cannot be transformed back

to the source code patch. As around 70% security patches

involve modifications that add or update conditional statements

(i.e., if statements) [24], we focus on enriching the control

flow variants of natural patches. Note that we refer to real

patches as natural patches to distinguish from synthetic ones.

Figure 4 depicts the overview of our oversampling method,

which contains three steps. First, for a given patch, we generate

the Abstract Syntax Trees (ASTs) from its related source code

files. Second, among these ASTs, we locate the if statements

involved with code changes in the patch. Third, given existing

patches, we transform their if statements according to a set of

predefined variant templates in order to get the corresponding

artificial patches. We detail each step in the following.

1) Generating ASTs from Patches: Since the patch is a

bunch of differences between two versions of files, it is not

a complete top-level program unit and some related portions

may be missing. Therefore, we cannot directly generate ASTs

from patches. Instead, for each patch, we retrieve the related

files before and after applying the target patch so that these

corresponding files can be parsed. Since we have downloaded

all the repositories associated with our patch dataset and

each patch can be uniquely identified with its commit hash

value, we can easily roll back the corresponding repository to

the point just before and after committing the target patch.

Furthermore, we can easily find out the patch-related files

that are listed in lines that start with diff --git. Then, we use

LLVM [4] to generate the ASTs for these files.

2) Locating Conditional Statements: The goal of this step

is to locate all the if statements related to the patch, i.e., if
statements that are added, deleted, or modified by the patch.

The if statements can be located by utilizing the IfStmt
<line:N:N, line:N:N> field in the AST files. From the

ASTs, we can retrieve the key information of if statements,

such as the start line, end line, and the internal structure. In

the next step, our transformation would focus on these if
statements since they are more likely to embed critical changes

of security patches.

3) Adding Control Flow Variants: Instead of modifying

both the BEFORE version and AFTER version at the same

time, we can modify one of these two versions and generate

patch variants. When we modify the AFTER version source

code, it is equivalent to adding some additional modifications

to the AFTER version code. In that case, when consider-

ing the patch variant, it is equivalent to the patch between

the original BEFORE version and the new AFTER version

(i.e., original AFTER version plus additional modifications).

Therefore, we only need to merge the original patch and the

additional modifications. Similarly, when we only change the

BEFORE version source code, it is equivalent to adding some

additional modifications to the original BEFORE version code.

Therefore, the patch variant is equivalent to the merge of the

inverse additional modifications and the original patch.

 const int _SYS_ZERO = 0;
 if (_SYS_ZERO || IF_STMT) {}

 int _SYS_VAL = 0;
 if (IF_STMT){_SYS_VAL = 1;}
 if (_SYS_VAL) {}

 bool _SYS_STMT = IF_STMT;
 if (True == _SYS_STMT) {}

 int _SYS_VAL = 0;
 if (IF_STMT){_SYS_VAL = 1;}
 if (_SYS_VAL && IF_STMT) {}

 const int _SYS_ONE = 1;
 if (_SYS_ONE && IF_STMT) {}

 int _SYS_VAL = 1;
 if (IF_STMT){_SYS_VAL = 0;}
 if (!_SYS_VAL) {}

 bool _SYS_STMT = !(IF_STMT);
 if (!_SYS_STMT) {}

 int _SYS_VAL = 1;
 if (IF_STMT){_SYS_VAL = 0;}
 if (!_SYS_VAL || IF_STMT) {}

Fig. 5: Eight different variants of IF statements.

As shown in Figure 5, we apply eight types of variants

on if statements to generate the synthetic patches. The

statements in normal font are control flow related contents in

natural patches, and the statements in bold are flow variants

added to generate artificial patches. By introducing control

flow complexity to natural patches, the synthetic dataset can

enrich representations of patches and alleviate the over-fitting

of the learning model, improving the performance of automatic

patch analysis tasks.

IV. EVALUATION

Based on the methodology introduced in Section III, we

collect a large-scale security patch dataset consisting of NVD-

based patches, wild-based patches, and synthetic patches.

We conduct a set of experimental studies to investigate the

effectiveness of the proposed algorithms and evaluate the

properties of the collected dataset. Specifically, our evaluation

aims to answer the following five research questions (RQs).

154

Authorized licensed use limited to: George Mason University. Downloaded on October 02,2021 at 21:46:24 UTC from IEEE Xplore. Restrictions apply.

• RQ1: How to efficiently construct the wild-based security

patch dataset using the nearest link search approach?

• RQ2: What is the performance of the nearest link search

approach compared with the state-of-the-art work?

• RQ3: How useful are the synthetic security patches?

• RQ4: What is the composition of our collected dataset?

• RQ5: What is the quality of PatchDB?

A. Wild-based Dataset Construction (RQ1)

Based on the NVD-based dataset that includes 4076 security

patches, we construct the wild-based security patch dataset by

identifying security patches from the wild using the proposed

nearest link search and human-in-the-loop approaches. Since

it is difficult to download all commits of every GitHub reposi-

tory, we focus on 313 GitHub repositories that are included in

the NVD reference hyperlinks and consider all their commits

as the wild. In total, we collect 6M patches in the wild.

Table II presents the dataset augmentation setup and results

in five rounds. The first two columns show the size of unla-

beled wild data used to perform the nearest link search and the

corresponding round number, respectively. The third column

is the number of candidates identified in each round. Since

our nearest link search method locates its nearest neighbor for

each known security patch, this number is equal to the number

of already labeled security patches. The fourth column exhibits

the number of real security patches verified by security experts.

To ensure the correctness of manual verification, three authors

of this paper label the candidates separately and then cross-

check their labeling results. The last column shows the ratio

of the verified security patches (column 4) to the candidates

(column 3). The higher ratio means the higher efficiency.

In the beginning, the NVD-based dataset includes 4076

security patches, and we use it as the initial dataset to search

their nearest links in an unlabeled wild dataset. Since it is too

expensive to compute distances from all the 6M instances in

the wild, we construct a smaller Set I by randomly selecting

100K commits from the wild 6M instances. We run three

rounds of dataset augmentation over Set I. In the first round,

the nearest link search method generates 4076 candidates, and

we manually verify that 895 are security patches, a ratio of

22%. Now we have 4971 security patches (i.e., 4076 NVD-

based and 895 wild-based ones). Meanwhile, 3181 candidates

are labeled as non-security patches through the manual verifi-

cation process, and we remove all these labeled patches from

Set I. In the second round, based on 4971 labeled security

patches, we repeat the above procedures on the updated Set

I, and 1235 instances out of 4971 candidates are manually

verified as security patches (a ratio of 25%). Similarly, in the

third round, we manually identify 993 new security patches

from 6206 candidates, and the ratio drops to 16%. Since there

can be 6-10K security patches in the 100K search range and

only around 1K instances are identified in each round, a large

number of unexplored patches still remain. In such cases,

ratios may not definitely decrease after each round.

While the ratios in Set I are 16-25%, we wonder if the ratio

can be further increased. Intuitively, the ratio may increase if

TABLE II: # of security patches identified in five rounds.

Search Range
(unlabeled patches)

Round Candidates
Verified

Security Patches
Ratio

Set I: 100K
1 4076 895 22%
2 4971 1235 25%
3 6206 993 16%

Set II: 200K 4 7199 2088 29%

Set III: 200K 5 9287 2786 30%

the candidates are located in a larger unlabeled wild dataset

since it is more likely to contain security patches that are

more similar to existing security patch instances. Therefore,

instead of continuing in Set I, we conduct the security patch

dataset augmentation in a larger unlabeled wild dataset Set

II, another 200K randomly selected from the 6M GitHub

commits. Among 7199 candidates selected by the nearest

link search, 2088 instances are security patches and the total

number of known security patches increases to 9287 after

Round 4. We find that the ratio (29%) is higher than the first

three rounds, which means a larger search range can enable a

higher ratio. To verify this, we conduct another round (Round

5) of data augmentation on Set III with another 200K randomly

selected instances. We discover 2786 security patches from

9287 candidates (30%). It confirms that the ratio increases

along with a larger search range. Compared with the brute

force search that considers all the unlabeled data as candidates

where only 6-10% candidates are security patches, our method

can almost triple the efficiency of human verification, in other

words, reduce around 66% efforts.

After the five rounds of the dataset augmentation process,

we collect a security patch dataset of 12,073 instances, where

4076 ones belong to the NVD-based dataset and 7997 ones

belong to the wild-based dataset. We also get a cleaned non-

security patch dataset of 23,742 instances.

B. Performance of Nearest Link Search Method (RQ2)

To evaluate the performance of our nearest link search

method, we compare it with three other data augmentation

methods including:

• Brute force search: directly screening security patches

from the wild.

• Pseudo labeling [19]: locating candidates from prediction

results of single machine learning model with the highest

confidence.

• Uncertainty-based labeling [28]: locating candidates

from prediction results of multiple machine learning

classifiers with the highest certainty (i.e., consensus).

Table III summarizes comparative evaluation results (i.e.,

the percentage of security patches and the confidence interval)

under the 95% confidence level. Given the same training

dataset (i.e., the NVD-based dataset with 4076 security patches

and a non-security patch dataset of 8352 instances), we com-

pare the performance of these four methods on recognizing

security patch candidates from an unlabeled dataset of 200K

random GitHub commits. For the brute force search, instead

155

Authorized licensed use limited to: George Mason University. Downloaded on October 02,2021 at 21:46:24 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Comparison with other augmentation methods.

Methods
Unlabeled

Patches
Candidates

Security
Patches� (%)

Brute Force Search

200K

200K 8(±1.7)%
Pseudo Labeling 4K 13(±1.8)%

Uncertainty-based Labeling 1K 12%
Nearest Link Search (ours) 4K 29(±2.4)%
� Sampled results based on 1K of candidates and 95% confidence level

of manually verifying each of the 200K instances, we verify

a random subset of 1K instances. The percentage of security

patches is around 8%. For the pseudo labeling, we use the

NVD-based dataset to train a model with the same features

adopted in our nearest link search method. Among popular

machine learning algorithms, we choose the Random Forest

classifier that performs the best to rank the security patch

candidates according to their confidence values and then select

the top 4076 candidates. In the 1K subset of top candidates,

about 13% of them are manually verified as security patches.

When conducting the uncertainty-based labeling, we imple-

ment ten classifiers including Random Forest, Support Vector

Machine (SVM), Logistic Regression, Stochastic Gradient

Descent (SGD) classifier, Sequential Minimal Optimization

(SMO) classifier, Naive Bayes, Bayesian Network, J48 Deci-

sion Tree, Reduced Error Pruning Tree (REPTree), and Voted

Perceptron using Weka [14]. An unlabeled GitHub commit is

regarded as a candidate only if all ten classifiers predict it as a

security patch. When applying the uncertain-based ensemble

model, 1174 instances out of the 200K unlabeled data are

predicted as security patches by all ten classifiers. Our manual

checks show that 12% of 1174 instances are security patches.

For our nearest link search method, we manually verify 1K

instances from 4076 candidates. We find around 29% instances

are security patches. We further investigate the reasons that our

method outperforms both the pseudo labeling method and the

uncertainty-based labeling method. The main reason is that

the distribution of security patches in the wild is different

from that in the NVD-based dataset, which may be biased to

certain types of vulnerabilities or popular software [20], [32].

Therefore, the models trained by the NVD-based dataset would

not be able to well profile patches in the wild. In contrast,

our nearest link search mainly targets at local distribution,

i.e., finding the nearest neighboring instances of the existing

dataset. Therefore, it has more tolerance on the difference

between the NVD-based dataset and the wild dataset.

With the same amount of human labor (e.g., manually

checking 1K subset), our experiments show that our nearest

link search can help identify more security patches. Since there

are hundreds of million repositories on GitHub, the number

of unlabeled patches (i.e., commits) will be huge. Therefore,

it is promising to construct an even larger wild-based security

patch dataset by repeating the data augmentation process with

more human efforts.

C. Evaluation of Synthetic Security Patches (RQ3)

To figure out if synthetic patches are useful and in which

condition they are useful, we apply our oversampling tech-

TABLE IV: Performance w/o or w/ synthetic patches.

Dataset Synthetic Dataset Precision Recall

NVD - 82.1% 84.8%
NVD 17K Sec. + 20K NonSec. 86.0% (+3.9%) 87.2% (+2.4%)

NVD+Wild - 92.9% 61.1%
NVD+Wild 58K Sec. + 129K NonSec. 93.0% (+0.1%) 61.2% (+0.1%)

Sec. = security patch; NonSec. = non-security patch

nique on the NVD-based dataset and the wild-based dataset,

respectively. For the NVD-based dataset, we create 16,836

artificial security patches and 19,936 artificial non-security

ones. For the wild-based dataset, we generate a synthetic

dataset containing 57,724 security patches and 128,736 non-

security ones. We apply them into a task of automatic security

patch identification and evaluate if the performance can be

improved by including the corresponding synthetic dataset.

When only employing the NVD-based dataset, we randomly

select 80% as the training set and use the remaining 20% as

the testing set. When applying the NVD-based dataset and its

synthetic dataset, we add all the synthetic data to the previous

training set to train the model and conduct inference on the

previous testing set for a fair comparison. We follow the same

way to split and allocate the data for the NVD+wild dataset

itself and the NVD+wild dataset along with its synthetic

dataset. Note that our synthetic patches are generated solely

based on the training set in each experiment. In our evaluation,

we adopt the recurrent neural network (RNN) algorithm [30],

which considers the source code of a given patch as a list of

tokens including keywords, identifiers, operators, etc. In the

RNN model, the current state depends on the current inputs

and the previous state so that the model can learn the context

information from tokens.

Comparative results are shown in Table IV. When solely

depending on the NVD-based dataset, the classification pre-

cision of the RNN model is 82.1% with a recall of 84.8%.

After adding the synthetic data into the NVD-based dataset,

the classification precision increases by 3.9% (to 86.0%), and

the F1 score can increase by 2.4% (to 87.2%). However, for the

natural dataset containing both the NVD-based dataset and the

wild-based dataset, we do not observe obvious improvement

after adding the synthetic data. The model trained with the

natural dataset only achieves 92.9% precision with the recall

of 61.1%. After adding the synthetic dataset, there is only a

slight increase, i.e., 0.1% in precision and 0.1% in recall. Note

that recall of the last two rows are lower than the first two rows

since the NVD+wild test dataset involves wild patches. We also

try some traditional oversampling techniques like SMOTE and

do not observe obvious performance increase.

The experimental results show that our oversampling tech-

nique is effective in the security patch identification task if we

only have a small dataset (i.e., the NVD-based dataset). When

we have a larger dataset (i.e., the combination of the NVD-

based dataset and wild-based dataset), the synthetic data can-

not lead to distinct improvement. The results are reasonable.

Since the small dataset contains a limited number and patterns

156

Authorized licensed use limited to: George Mason University. Downloaded on October 02,2021 at 21:46:24 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Security patch distribution in PatchDB.

ID Type of patch pattern %�

1 add or change bound checks 10.8%
2 add or change null checks 9.1%
3 add or change other sanity checks 18.0%
4 change variable definitions 4.8%
5 change variable values 9.1%
6 change function declarations 1.8%
7 change function parameters 2.6%
8 add or change function calls 24.4%
9 add or change jump statements 1.7%

10 move statements without modification 5.0%
11 add or change functions (redesign) 12.0%
12 others 0.8%

� Sampled results based on 1K patches.

of patches, it cannot fully represent the feature space. In this

case, the synthetic patches increase the number of control flow

complexity as well as enrich the feature representations. As a

result, the oversampling technique can boost the generalization

ability of the trained model. In contrast, a larger security patch

dataset may have already contained enough patch samples

of various patterns so that the synthesis technique can only

provide a marginal increase.

D. Dataset Composition (RQ4)

To figure out the composition of the PatchDB, we analyze

it from the perspective of patch patterns. According to the

definition of patch patterns in previous studies [35], [38], [41],

we classify these security patches into 12 categories in Table V

in terms of their code changes. The first three types that add

sanity checks are common in the security patches since they

directly block unsafe inputs. Given the fact that the bound and

NULL pointer are the most frequent items in the sanity check,

we consider them separately. Type 4 includes changing the

data type from int to unsigned int, resizing a buffer, etc.

Type 5 changes variable values, e.g., initialize memory to zero

for preventing information leak. Type 6, 7, and 8 are related to

fixing vulnerable functions and their parameters. Among them,

Type 8 is the most common one (e.g., replacing an unsafe

C library function strcpy with strlcpy, adding the lock

and unlock before and after a raced operation, and calling

release functions to avoid information leak). Type 9 adds or

modifies the jump statements for the vulnerabilities that lack

proper error handling. Type 10 moves some statements from

one place to another with little or no modifications. Such

fixes are usually for uninitialized use, use-after-free, etc. Type

11 rewrites the function logic with lots of different program

changes. Type 12 refers to some uncommon minor changes

that cannot be categorized into any of the above types.

From Table V, we can find that Type 8 is the most frequent

class in the PatchDB. Type 1, 3, and 8 (i.e., several kinds of

sanity checks and function call modifications) compose more

than half of the PatchDB. Intuitively, given a security patch in

the NVD-based dataset, the nearest link search method locates

its nearest instance in the feature space as the candidate for

dataset augmentation. Therefore, we wonder if the nearest link

search changes the type distribution. In other words, facilitated

 0

 5

 10

 15

 20

 25

 30

 35

typ
e-1

1
typ

e-3
typ

e-1
typ

e-8
typ

e-5
typ

e-2
typ

e-4
typ

e-7

typ
e-1

0
typ

e-6

typ
e-1

2
typ

e-9

Pr
op

or
tio

n
(%

)

NVD-based dataset wild-based dataset

Fig. 6: Distribution comparison between NVD-based and

wild-based datasets in terms of code changes.

with the nearest link search, is the type distribution of the wild-

based dataset the same as that of the NVD-based dataset?

To answer this question, we manually classify a random

subset according to the patch patterns for the NVD-based and

wild-based dataset, respectively. The results in Figure 6 show

that the wild-based dataset identified by the nearest link search

differs from the original NVD-based dataset with regards to

the type distribution. The type allocation of the NVD-based

dataset conforms to a long tail distribution [7], where 3 out of

the 12 types consist of around 60% of the NVD-based dataset,

and most of the other 9 types are under 5%. In contrast, the

type distribution of the wild-based dataset is largely different

from the NVD-based dataset. Previous head class Type 11

only accounts for around 5% of the wild-based dataset. Type

8 becomes the first head class. Also, the ranks of previous tail

classes are mostly changed. Thus, generated by the nearest

link search, the wild-based dataset exhibits a different type

distribution from the NVD-based dataset.

Although each security patch located by the nearest link

search is the nearest neighbor of a security patch in the NVD-

based dataset, their similarity may only be in the feature

space, and these features are not one-to-one corresponding

with security patch types. Between security and non-security

patches, given a security patch, the nearest link search finds

a similar instance that is also a security patch; however, they

may not belong to the same security patch type. Therefore, the

wild-based dataset identified by the nearest link search can

have a dissimilar distribution from the NVD-based dataset.

Meanwhile, such differences bring some benefits. The main

problem of the long tail distribution is that there is not enough

data for tail classes. In that case, machine learning would not

perform well when handling those minority instances. The

wild-based dataset solves this problem to a certain extent by

introducing more varieties to the PatchDB.

During this analysis, we also manually classify a total

number of 5K security patches in PatchDB into these patch

patterns. We will also make these materials public for further

research. More potential use will be discussed in Section V.

157

Authorized licensed use limited to: George Mason University. Downloaded on October 02,2021 at 21:46:24 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Impacts of datasets over learning-based models

Training Dataset Algorithm Test Dataset Precision Recall

NVD
Random Forest

NVD 58.4% 21.7%
Wild 58.0% 19.5%

RNN
NVD 82.8% 83.2%
Wild 88.3% 24.2%

NVD+Wild
Random Forest

NVD 90.1% 22.5%
Wild 91.8% 44.6%

RNN
NVD 92.8% 60.2%
Wild 92.3% 63.2%

E. Quality of the PatchDB (RQ5)

To evaluate the quality of our collected dataset, we employ

PatchDB in the task of automatic security patch identification.

More specifically, we use both the NVD-based and wild-based

dataset to train a learning-based model that identifies if a given

patch is security-related. Then, we compare its performance

with the one trained by only the NVD-based dataset. In our

experiments, two machine learning models are implemented.

One is the random forest classifier with the statistical features

of patches, and the other is the recurrent neural network

classifier that can extract context information from tokens.

The experimental setup and results are shown in Table

VI. For the NVD-based dataset, we randomly choose 80%

instances as the training set and the remaining 20% as the test

set. The wild-based dataset is split in the same way. Then,

for a fair comparison, we combine the training set of both the

NVD-based and wild-based dataset as the training data. When

using the NVD-based test dataset, the Random Forest (and

RNN) model trained with the NVD-based dataset can achieve

58.4% (and 82.8%) precision with 21.7% (and 83.2%) recall.

The testing precision and recall would be 90.1% (and 92.8%)

as well as 22.5% (and 60.2%) recall if we train the model with

both NVD-based dataset and wild-based dataset. The training

dataset has little impact on the model when tested on the

NVD-based dataset. However, when using the wild-based test

dataset, the precision and recall drop to 58.0% (and 88.3%)

and 19.5% (and 24.2%) if the random forest (and RNN) model

is trained with the NVD-based dataset. Therefore, the machine

learning model trained by the NVD-based dataset exhibits

insufficient generalization ability due to the limited number

and patterns of instances. In contrast, the models trained with

both the NVD-based dataset and the wild-based dataset have

better generalization ability. The performance remains stable

no matter which testing dataset is used, proving that the model

can be applied to unknown patch samples.

The differences between classification models are also

demonstrated in Table VI. With the same training data and

testing data, the RNN model has a better performance than the

Random Forest model. Compared with the statistic syntactic

features (Table I), the RNN model can also seize the context

information between programming tokens, which provides

valuable insight into the programming language processing.

V. DISCUSSION

We describe several usage scenarios of PatchDB and how

the dataset may promote the related research and applications.

We also discuss some limitations as well as future work.

A. Usage Scenarios of PatchDB

1) Vulnerability/Patch Presence Detection: Since security

patches comprise both the vulnerable code and corresponding

fixes, they can be used to detect vulnerable code clone by using

patch-enhanced vulnerability signatures [9], [36]. Such works

generate signatures directly from the code gadgets. Hence,

more security patch instances enable more vulnerability signa-

tures for matching and thus enhances the detection capability.

From another perspective, patching status is critical for down-

stream software, which motivates the need for reliable patch

presence testing. The PatchDB identifies 8K silent security

patches that are not provided in the NVD. The presence of

such patches can be tested in the downstream software [17],

[40]. Also, a binary security patch dataset could be constructed

by compiling the source code in our dataset.

2) Automatic Patch Generation: Since previous patch anal-

ysis works are conducted on a small dataset, they are con-

strained to summarize the fix patterns of some common patch

types, e.g., sanity testing. The main reason is that they lack

enough instances to perform their study. In contrast, our

analysis on the PatchDB in terms of code changes (Section

IV-B-2) presents that there are still many security patches with

multiple fix patterns so that our large-scale patch dataset could

be used to summarize more patch patterns. In Table VII, we

show two examples of fix patterns concluded by ourselves

based on observation of the PatchDB that have never been

studied by previous study [24], [35], [38], i.e., race condition

and data leakage. These patterns describe how security patches

fix the corresponding security impacts caused by vulnerable

operations. For the race condition, the patches typically add

and release lock to guarantee the atomicity for a vulnerable

operation. For the data leakage, the patches often release

the critical value after the last normal operation to avoid

further vulnerable operation. With a large-scale security patch

dataset, more complex patch patterns can be discovered so that

semantics can be learned for automatically generating more

types of security patches.

TABLE VII: Example of fix patterns

Race Condition Data Leakage

... normal_op(CV);
+ lock(CV); ...
vulnerable_op(CV, ...); + release(CV);

+ unlock(CV); ...
... vulnerable_op(CV, ...);

CV = critical value

3) Benchmark: The PatchDB can also be used as a bench-

mark. Since the PatchDB is the largest-scale dataset of security

patches to the best of our knowledge, it is closer to the

practical scenario and enlarges the spectrum of the evaluation.

Also, since it is collected from 313 GitHub repositories other

than some specific projects, it provides a good benchmark to

test the generalization capability of target techniques.

158

Authorized licensed use limited to: George Mason University. Downloaded on October 02,2021 at 21:46:24 UTC from IEEE Xplore. Restrictions apply.

B. Limitations and Future Work

Our work currently focuses on C/C++ languages that are

with the highest number of vulnerabilities [34]. The syntactic

features identified in Table I may be commonly shared by the

patches for different languages (e.g., changes of if statements,

loops, and logical operators). Therefore, our system could

be extended to other programming languages by customizing

their syntax parsing related features. However, for safe lan-

guages like Rust that have much fewer vulnerabilities, it may

be difficult to collect a large-size security patch dataset. We

leave the extensions to other languages as future work.

Similar to previous work [20], we assume that all the

information retrieved from the NVD is correct. That is to say,

we assume the patches crawled from the URLs provided by

the NVD are for the corresponding CVE entry. However, we

observe up to 1% of patches may not be correct. For example,

the provided link is for a brand new version that mingles

multiple code differences where security fix is part of that. We

consider the proportion of incorrect patches is small enough

to be ignored in our analysis. Also, the NVD may be biased

towards certain types of software. Given the wide range of

software included by the NVD, we argue that it will remain

largely applicable for most open source software.

VI. RELATED WORKS

Patch Datasets. Since a security patch aggregates both vul-

nerable code and the corresponding modifications at the same

time, many vulnerability detection research constructs security

patch datasets. Kim et al. [18] acquire security patches from

eight well-known Git repositories to detect vulnerable code

clone. Z. Li et al. [21] build a Vulnerability Patch Database

(VPD) that consists of 19 products. However, the size of these

datasets is not sufficient to perform a machine learning-based

study and may introduce biases to analysis results. Although

SARD provides some samples that mitigate the vulnerabilities,

it mainly focuses on vulnerable code and most of the samples

are artificial. By querying thousands of CVE records for open

source projects on the NVD, F. Li et al. [20] build a large-scale

security patch database. Further, considering silent security

patches, Xiao et al. [36] enrich the dataset with commits

obtained from their industrial collaborator. However, such

datasets are not publicly accessible.

Besides, there are several web-based patch or bug tracking

systems. Patchwork [6], a patch management system, catches

patches sent to the mailing list, but it is mainly used for

several Linux kernel subsystems. Bug tracking systems like

Bugzilla [1] may provide patch information in corresponding

reports. Yet not all the bug reports contain such information

and they do not distinguish between security and non-security

patches. These limitations motivate us to construct a large

dataset of security patches from various types of projects.

Patch Analysis. Recently, there is an increasing number of

works on patch analysis. Most of them focus on investigating

the textual information (e.g., bug report, commit message,

etc.), which does not require the retrieval and analysis of the

source code. They use supervised and unsupervised learning

techniques to classify patches [13], [16], [43]. However, they

cannot handle the situation where the documentation of se-

curity patches is inaccurate or even totally missing due to

different maintainers, limited security domain knowledge, and

changing regulations during the software life cycle.

At the source code level, Zhong et al. [42] conduct an

empirical study on bug fixes from six popular JAVA projects.

Soto et al. [29] focus on patterns, replacements, deletions, and

additions of bug fixes. Perl et al. [27] study the attributes

of commits that are more likely to introduce vulnerabilities.

Machiry et al. [25] analyze safe patches that do not disrupt

the intended functionality of the program. However, all these

works do not distinguish security patches from normal bug

fixes. Zaman et al. [39] discover the differences between

security patches and performance bugs on a specific project

- Mozilla Firefox. Li et al. [20] are the first one to perform

a large-scale empirical study of security patches versus non-

security bug fixes, discussing the metadata characteristics and

life cycles of security patches.

Some studies utilize machine learning-based models to iden-

tify the type of a given patch [31]–[33], while the deficiency of

patch instances restricts the application of the robust classifier

(e.g., deep learning model). Also, most of these models are

trained with a dataset from single or multiple software projects,

which provide limited generalization capacity in the wild. In

contrast, our work provides a large dataset from over 300

GitHub repositories and we use a new oversampling method

to further increase the variants at the source code level. At

the binary level, Xu et al. [37] present a scalable approach to

identify the existence of a security patch through semantic

analysis of execution traces. With the help of signatures

generated from open-source patches, some methods [17], [40]

test if the target binaries have been patched.

VII. CONCLUSION

In this work, we construct a large-scale dataset of security

patches called PatchDB. In particular, we develop a novel

nearest link search approach to help locate the most promising

candidates of security patches from an unlabeled dataset,

reducing the workload of the manual verification. Also, we

propose a new oversampling method to synthesize patches

at the source code level, which is effective to increase the

variance of the patch dataset. We conduct a set of experiments

to study the composition and quality of PatchDB and verify

the effectiveness of our proposed algorithms. The results of

a comprehensive evaluation show that PatchDB is promising

to facilitate the patch analysis and vulnerability detection

techniques.

VIII. ACKNOWLEDGMENTS

This work was partially supported by the US Depart-

ment of the Army grant W56KGU-20-C-0008, the Office of

Naval Research grants N00014-18-2893, N00014-16-1-3214,

and N00014-20-1-2407, and the National Science Foundation

grants CNS-1815650 and CNS-1822094.

159

Authorized licensed use limited to: George Mason University. Downloaded on October 02,2021 at 21:46:24 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Bugzilla. https://www.bugzilla.org.

[2] Common Vulnerabilities and Exposures. https://cve.mitre.org.

[3] GitHub. https://github.com.

[4] LLVM. https://llvm.org.

[5] National Vulnerability Database. https://nvd.nist.gov.

[6] Patchwork. http://patchwork.ozlabs.org.

[7] Chris Anderson and Mia Poletto Andersson. Long tail. 2004.

[8] Paul E Black. Sard: Thousands of reference programs for software
assurance. J. Cyber Secur. Inf. Syst. Tools Test. Tech. Assur. Softw. Dod
Softw. Assur. Community Pract, 2(5), 2017.

[9] Benjamin Bowman and H Howie Huang. VGraph: A Robust Vulnerable
Code Clone Detection System Using Code Property Triplets. In 2020
IEEE European Symposium on Security and Privacy (EuroS&P), pages
53–69. IEEE, 2020.

[10] Center for Assured Software National Security Agency. Juliet Test Suite
v1.2 for C/C++ User Guide. https://samate.nist.gov/SRD/resources/
Juliet Test Suite v1.2 for C Cpp - User Guide.pdf, 2018.

[11] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique. Jour-
nal of artificial intelligence research, 16:321–357, 2002.

[12] Hong Cui, Jingjing Zhang, Chunfeng Cui, and Qinyu Chen. Solving
large-scale assignment problems by kuhn-munkres algorithm. 2016.

[13] Dipok Chandra Das and Md Rayhanur Rahman. Security and per-
formance bug reports identification with class-imbalance sampling and
feature selection. In 2018 Joint 7th International Conference on
Informatics, Electronics & Vision (ICIEV) and 2018 2nd International
Conference on Imaging, Vision & Pattern Recognition (icIVPR), pages
316–321. IEEE, 2018.

[14] E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer, and I. H.
Witten. Weka: A machine learning workbench for data mining., pages
1305–1314. Springer, Berlin, 2005.

[15] Michael Gegick, Pete Rotella, and Tao Xie. Identifying security bug
reports via text mining: An industrial case study. In 2010 7th IEEE
Working Conference on Mining Software Repositories (MSR 2010),
pages 11–20. IEEE, 2010.

[16] Katerina Goseva-Popstojanova and Jacob Tyo. Identification of security
related bug reports via text mining using supervised and unsupervised
classification. In 2018 IEEE International Conference on Software
Quality, Reliability and Security (QRS), pages 344–355. IEEE, 2018.

[17] Zheyue Jiang, Yuan Zhang, Jun Xu, Qi Wen, Zhenghe Wang, Xiaohan
Zhang, Xinyu Xing, Min Yang, and Zhemin Yang. Pdiff: Semantic-
based patch presence testing for downstream kernels. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 1149–1163, 2020.

[18] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. Vuddy: A
scalable approach for vulnerable code clone discovery. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 595–614. IEEE, 2017.

[19] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. In Workshop on challenges
in representation learning, ICML, volume 3, 2013.

[20] Frank Li and Vern Paxson. A large-scale empirical study of security
patches. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2201–2215, 2017.

[21] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu.
Vulpecker: an automated vulnerability detection system based on code
similarity analysis. In Proceedings of the 32nd Annual Conference on
Computer Security Applications, pages 201–213, 2016.

[22] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang,
Zhijun Deng, and Yuyi Zhong. Vuldeepecker: A deep learning-based
system for vulnerability detection. arXiv preprint arXiv:1801.01681,
2018.

[23] Guanjun Lin, Wei Xiao, Jun Zhang, and Yang Xiang. Deep learning-
based vulnerable function detection: A benchmark. In International
Conference on Information and Communications Security, pages 219–
232. Springer, 2019.

[24] Kangjie Lu, Aditya Pakki, and Qiushi Wu. Detecting missing-check bugs
via semantic-and context-aware criticalness and constraints inferences.
In 28th USENIX Security Symposium (USENIX Security 19), pages
1769–1786, 2019.

[25] Aravind Machiry, Nilo Redini, Eric Camellini, Christopher Kruegel, and
Giovanni Vigna. Spider: Enabling fast patch propagation in related

software repositories. In 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020.

[26] Masao Ohira, Yutaro Kashiwa, Yosuke Yamatani, Hayato Yoshiyuki,
Yoshiya Maeda, Nachai Limsettho, Keisuke Fujino, Hideaki Hata,
Akinori Ihara, and Kenichi Matsumoto. A dataset of high impact bugs:
Manually-classified issue reports. In 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, pages 518–521. IEEE,
2015.

[27] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian
Yamaguchi, Konrad Rieck, Sascha Fahl, and Yasemin Acar. VCCFinder:
finding potential vulnerabilities in open-source projects to assist code
audits. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 426–437. ACM, 2015.

[28] Richard Segal, Ted Markowitz, and William Arnold. Fast uncertainty
sampling for labeling large e-mail corpora. In CEAS. Citeseer, 2006.

[29] Mauricio Soto, Ferdian Thung, Chu-Pan Wong, Claire Le Goues, and
David Lo. A deeper look into bug fixes: patterns, replacements,
deletions, and additions. In 2016 IEEE/ACM 13th Working Conference
on Mining Software Repositories (MSR), pages 512–515. IEEE, 2016.

[30] Jinsong Su, Zhixing Tan, Deyi Xiong, Rongrong Ji, Xiaodong Shi, and
Yang Liu. Lattice-based recurrent neural network encoders for neural
machine translation. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, AAAI’17, page 3302–3308. AAAI Press, 2017.

[31] Yuan Tian, Julia Lawall, and David Lo. Identifying linux bug fixing
patches. In 2012 34th international conference on software engineering
(ICSE), pages 386–396. IEEE, 2012.

[32] Xinda Wang, Kun Sun, Archer Batcheller, and Sushil Jajodia. Detecting”
0-day” vulnerability: An empirical study of secret security patch in
oss. In 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 485–492. IEEE, 2019.

[33] Xinda Wang, Shu Wang, Kun Sun, Archer Batcheller, and Sushil
Jajodia. A machine learning approach to classify security patches into
vulnerability types. In 2020 IEEE Conference on Communications and
Network Security (CNS), pages 1–9. IEEE, 2020.

[34] White Source Software. What are the most secure
programming languages? https://www.whitesourcesoftware.com/
most-secure-programming-languages/.

[35] Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu. Precisely
characterizing security impact in a flood of patches via symbolic rule
comparison. In Proceedings of the 27th Annual Network and Distributed
System Security Symposium (NDSS’20), 2020.

[36] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng
Li, Binghong Liu, Yang Liu, Wei Huo, Wei Zou, et al. MVP: Detecting
vulnerabilities using patch-enhanced vulnerability signatures. In 29th
USENIX Security Symposium (USENIX Security 20), pages 1165–1182,
2020.

[37] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and
Fu Song. Spain: security patch analysis for binaries towards under-
standing the pain and pills. In Proceedings of the 39th International
Conference on Software Engineering, pages 462–472. IEEE Press, 2017.

[38] Zhengzi Xu, Yulong Zhang, Longri Zheng, Liangzhao Xia, Chenfu Bao,
Zhi Wang, and Yang Liu. Automatic hot patch generation for android
kernels. In 29th USENIX Security Symposium (USENIX Security 20),
pages 2397–2414, 2020.

[39] Shahed Zaman, Bram Adams, and Ahmed E Hassan. Security versus
performance bugs: a case study on firefox. In Proceedings of the
8th working conference on mining software repositories, pages 93–102,
2011.

[40] Hang Zhang and Zhiyun Qian. Precise and accurate patch presence test
for binaries. In 27th USENIX Security Symposium (USENIX Security
18), pages 887–902, 2018.

[41] Lei Zhao, Yuncong Zhu, Jiang Ming, Yichen Zhang, Haotian Zhang,
and Heng Yin. Patchscope: Memory object centric patch diffing. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 149–165, 2020.

[42] Hao Zhong and Zhendong Su. An empirical study on real bug fixes.
In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 1, pages 913–923. IEEE, 2015.

[43] Yaqin Zhou and Asankhaya Sharma. Automated identification of
security issues from commit messages and bug reports. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering,
pages 914–919, 2017.

160

Authorized licensed use limited to: George Mason University. Downloaded on October 02,2021 at 21:46:24 UTC from IEEE Xplore. Restrictions apply.

