
A Machine Learning Approach to Classify Security
Patches into Vulnerability Types

Xinda Wang1, Shu Wang1, Kun Sun1, Archer Batcheller2, Sushil Jajodia1
1Center for Secure Information Systems, George Mason University, Fairfax, VA, USA

2Northrop Grumman, Washington, D.C., USA
{xwang44, swang47, ksun3, jajodia}@gmu.edu, archer.batcheller@ngc.com

Abstract—With the increasing usage of open source software
(OSS) in both free and proprietary applications, vulnerabili-
ties embedded in OSS are also propagated to the underlying
applications. It is critical to find security patches to fix these
vulnerabilities, especially those essential to reduce security risk.
Unfortunately, given a security patch, currently there does not
exist a way to automatically recognize the vulnerability that is
fixed. In this paper, we first conduct an empirical study on security
patches by type (i.e., corresponding vulnerability type), using
a large-scale dataset collected from the National Vulnerability
Database (NVD). Based on analysis results, we develop a machine
learning-based system to help identify the vulnerability type of a
given security patch. The evaluation results show that our system
achieves good performance.

Index Terms—security patch, empirical study, software main-
tenance, open source software

I. INTRODUCTION

Open source software (OSS) has been widely used in both
free and proprietary applications. Black Duck reports that 96%
of their scanned applications contain open source components,
which account for 57% of the code base on average [1]. With
the skyrocketing number of open source vulnerabilities [2],
software maintainers have to deal with a bunch of security
patches. Usually, security patches cannot be blindly applied
in production systems where OSS components have been
customized to meet their specific requirements [3]. Also, they
may need to prioritize the application of certain security patches
after identifying the corresponding vulnerability types.

However, it remains a challenge to identify the type of
corresponding vulnerability for a given security patch. Security
patches may not be well documented due to the subjectivity of
software maintainers, limited security expertise, and changing
regulations during the software life cycle [2]. Thus, there is
a lack of necessary information on the type and impact of
the fixed vulnerability. Existing research studies focus more on
distinguishing security patches from non-security ones [4]–[6].
Nowadays, the types of security patches are decided mainly
through manual analysis, due to the lack of in-depth under-
standing of security patches and an automatic classification
solution [7], [8].

In this paper, we first conduct an empirical study on the
security patches by type, using a large-scale security patch
dataset collected from the National Vulnerability Database

This work was partially supported by the National Science Foundation grant
IIP-1266147 and the US Department of the Army grant W56KGU-20-C-0008.

(NVD) and then develop a machine learning-based system to
help automatically identify the (vulnerability) type of a given
security patch. Since there is no available large-scale security
patch dataset, we build one by querying the vulnerabilities in
the NVD and then downloading their corresponding security
patches. To guarantee the quality of our dataset, we manually
go through all collected security patches and remove those
mingled with other non-security ones [9]. We focus on the
security patches of ten common vulnerability types in C/C++
languages [10], [11].

Comparing to researches that treat all types of security
patches equally [4]–[6], [12], [13], our work is the first to
explore the nature of security patches by type and reveal several
new discoveries: (1) Many security patches do not localize
in one function as expected by previous researches [14],
[15]; (2) Some types of security patches such as information
exposure and path traversal only make slight changes even
if involving multiple functions; (3) Most vulnerabilities are
patched by adding or updating conditional statements. All these
observations provide useful insights to the development and
improvement of vulnerability mitigation approaches.

We extract features inspired by our quantitative analysis and
apply them in developing a machine learning-based security
patch classification system. Compared with previous works that
require well-documented metadata and is restricted to a small
number of projects (most limited to only one project) [16], [17],
our model uses source-code level features and shows better per-
formance even on hundreds of projects. Our proposed method
can be adopted by existing vulnerability tracking systems as
a general component to reduce human efforts and biases on
vulnerability classification.

In summary, we make the following contributions:

• We present a security patch classification system that can
identify the vulnerability types of given security patches
from multiple OSS projects. By capturing the effective
source code level features and using machine learning
approaches, our system can provide better performance
than previous works that focus on analyzing one project.
Our approach is suitable to be integrated into current
software maintenance systems.

• We propose a reproducible methodology to collect a large-
scale security patch dataset with corresponding vulnerabil-
ity type labels from the National Vulnerability Database.

2020 IEEE Conference on Communications and Network Security (CNS)

978-1-7281-4760-4/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: George Mason University. Downloaded on August 23,2020 at 02:48:30 UTC from IEEE Xplore. Restrictions apply.

We manually clean the dataset to assure its quality.
• To the best of our knowledge, we are the first one

to conduct extensive quantitative analysis on security
patches by type. Our findings expose the limitations of
prior approaches for general security patches. We believe
our explorations into specific characteristics of different
security patches would be useful for improving current
vulnerability mitigation techniques.

II. RELATED WORK

A. Security Patch Collection

Since a security patch aggregates both vulnerable code and
the corresponding modification at the same time, many vulner-
ability detection researches construct security patch datasets.
Kim et al. [18] acquire security patches from eight well-known
Git repositories. Z. Li et al. [19] built a Vulnerability Patch
Database (VPD) that consists of 19 products. However, the
size of these datasets is not sufficient to perform a machine
learning-based study and may introduce biases to analysis
results. Considering thousands of CVE records on open source
projects, F. Li et al. [5] build a large-scale security patch
database by querying the NVD. However, they have not open-
sourced their database to the public.

B. Patch Analysis

There have been many works on patch analysis. On the
source code level, Zhong et al. [12] conduct an empirical
study on bug fixes from six popular JAVA projects. Soto et al.
[13] focus on patterns, replacements, deletions, and additions
of bug fixes. Perl et al. [20] study the attributes of commits
that lead to vulnerabilities. However, they do not distinguish
security patches from bug fixes. Zaman et al. [4] discover the
differences between security patches and performance bugs
on a single project - Mozilla Firefox. Li et al. [5] are the
first one to perform a large-scale empirical study of security
patches versus non-security bug fixes, discussing the basic
characteristics and life cycles of security patches. On the binary
level, Xu et al. [6] present a scalable approach to identify
the existence of a security patch through semantic analysis of
execution traces. With the help of signatures generated from
open-source patches, Zhang et al. [21] propose a precise and
accurate method to test if the software has been patched. Until
now, most of patch analysis researches characterize various
types of security patches as a whole and do not distinguish
among them. To the best of our knowledge, our paper is the
first one to analyze security patches by type on a large-scale
cross-repository dataset.

C. Classification of Software Metadata

There has been a line of works investigating the software
metadata, which does not require the retrieval and analysis of
the source code. Arya et al. [22] OSS issue discussions and
propose an automatic approach to detect the types of discussion
comments. Hindle et al. [17] make use of the keywords in
the commit message (similar to change log), the author, and
module/file type information to classify code changes into a

1 diff --git a/pppd/options.c b/pppd/options.c
2 index 45fa742..e9042d1 100644
3 --- a/pppd/options.c
4 +++ b/pppd/options.c
5 @@ -1289,9 +1289,10 @@ getword(f, word, newlinep, fname

)
6 /*
7 * Store resulting character for escape sequence.
8 */
9 - if (len < MAXWORDLEN-1)

10 + if (len < MAXWORDLEN) {
11 word[len] = value;
12 - ++len;
13 + ++len;
14 + }
15
16 if (!got)
17 c = getc(f);
18 @@ -1329,9 +1330,10 @@ getword(f, word, newlinep, fname

)
19 /*
20 * Ordinary char: store it in word and get another.
21 */
22 - if (len < MAXWORDLEN-1)
23 + if (len < MAXWORDLEN) {
24 word[len] = c;
25 - ++len;
26 + ++len;
27 + }
28
29 c = getc(f);

Listing 1. A patch example (CVE-2014-3158).

specific maintenance category. Aghaei et al. [23] discover the
relationship between CVE description information and CWE
definition to do the mapping. CVE Details website [24] use the
keywords of CVE descriptions to classify the vulnerabilities.
However, results of all such techniques may be threatened
by inaccurate commit messages or descriptions. A study has
shown that over 40% of the vulnerability reports or CVE sum-
maries contain inconsistent information [8]. Also, considering
the reputation, software vendors may manipulate the commit
messages or release notes to conceal serious problems [25].
Instead of using this descriptive information, our work focuses
on analyzing the source code of security patches.

III. COLLECTION OF SECURITY PATCH DATABASE

This section introduces our efforts on collecting a large-
scale security patch dataset and improving the data quality. We
focus on ten types of common vulnerabilities by considering
the categorization and frequency of the CWE top 25 dangerous
software errors, which cover 90% of our collected dataset.

A. Preliminary

A patch consists of the differences between the old and the
new version of files and some context information. Listing 1 is
an example of the patch for CVE-2014-3158. Each patch may
modify several files and all the modification on a file is called
difference that starts with a diff (e.g., line 1). Each difference
may contain multiple change hunks that include consecutive
lines before and after modification with − and +, respectively.
For instance, lines 9 and 10 is a change hunk, and there are
four hunks in this patch. On software development platforms
like GitHub, a commit can be regarded as a patch.

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: George Mason University. Downloaded on August 23,2020 at 02:48:30 UTC from IEEE Xplore. Restrictions apply.

B. Data Collection

To avoid biased conclusions drawn from a small number
of software projects, we collect a dataset by first querying
the NVD that covers numerous cyber security products and
services. Since CVE ID is used as the index of NVD, we down-
load the CVE list that records all the up-to-date assigned CVE
IDs as the reference to query the NVD. In the CVE list, each
CVE ID is followed with pertinent reference links of reports,
advisories, and patches (if any). Based on our observation, we
find the URLs that contain security patches have some uniform
patterns. For the repositories hosted on GitHub, the patch
URLs are like: github.com/{owner}/{repo}/commit/{commit}.
By matching such a pattern in the reference links, we can
download corresponding security patches of NVD entries.

To get the vulnerability type, we crawl the corresponding
NVD page where each vulnerability type is represented with a
Common Weakness Enumeration Specification (CWE) ID [26].
Since patches written in different programming languages may
have different syntactic patterns, it is hard to cover the syntax of
all types of languages. We focus on patches of projects written
in C/C++ that are the languages with the highest number of
vulnerabilities [2].

C. Data Cleaning

The collected security patches may be polluted in two ways:
(1) A security patch mingles with other patches; and (2) A
security patch makes key modifications on the non-C/C++ part.

Theoretically, a patch is corresponding to a vulnerability
fix, non-security bug fix, or feature update. However, due to
different version control philosophies, some software vendors
may release a big “patch” that mingles multiple security patches
or even multiple types of patches. In case that these patches
threaten our analysis results, we manually filter them out by
analyzing the commit message (if any) and the code of each
patch in our dataset.

Besides, after excluding all the non-C/C++ projects, we find
even the patches of C/C++ projects may contain modifications
on non-C/C++ files such as .changelog, .kconfig, etc. Since we
find most of non-C/C++ parts only make simple documenta-
tion modifications (e.g., version number or release note), we
could simply remove these parts from corresponding patches.
Through manual check, we find less than 1% security patches
embed key modification (e.g., .S files to solve the dependency
problem). We do not take them into consideration.

D. Vulnerability Type

There are 67 CWE types in our original dataset. Here we
do not directly adopt these CWEs as the ground truth of
vulnerability type for our work. That is because the CWEs
are organized in a hierarchical structure (tree) [26] where a
CWE may be a subset (child) of other CWEs, facilitating
the vulnerability evaluation on different granularity levels.
However, it also introduces ambiguity and overlapping when
CWEs of different granularity are used to label similar CVE
entries [7]. For instance, CVE-2018-16392 that fixes out-of-
bounds writes is labeled by an NVD analyst as CWE-119

TABLE I
DISTRIBUTION OF VULNERABILITY TYPE

No. Vulnerability Type Support

1 Buffer error 1462
2 Resource management error 566
3 Improper input validation 447
4 Numeric error 394
5 Broken access control 294
6 Information exposure 262
7 Path traversal 55
8 Cryptographic issue 54
9 Injection 43

10 Improper authentication 18

(Improper Restriction of Operations within the Bounds of a
Memory Buffer). Meanwhile, a similar vulnerability, CVE-
2016-6855, is accurately labeled as CWE-787 (Out-of-bounds
Write) that is the child of CWE-787. This is because NVD uses
human analysts to manually score CVEs using CWEs and thus
different analysts may have different opinions. Therefore, if we
borrow CWE slice as vulnerability types, security patches for
CWE-787 and CWE-119 would be regarded as two different
classes while they are overlapping and have similar character-
istics. Instead, we choose to group them into ten major types.
First, we identify these types through considering both CWE
top 25 dangerous software errors [10] and the frequency of each
CWE type. Next, we study the definition of all the CWEs in
our original dataset and conduct the remapping from CWEs to
our identified ten major types. For instance, we regard CWE-
787 and CWE-119 as a new type - buffer error. The above
steps adopt a qualitative content analysis process as follows:

a. Two authors of this paper independently identify ten major
types using their expertise after researching the CWE
description and focusing on types with high frequency and
severity. Then, they discuss their identified results, resolve
disagreements (if any), and refine the major types.

b. Given the identified ten major types, two authors sepa-
rately perform the remapping from 67 CWEs to ten major
vulnerability types by studying the CWE definition. Then,
they meet to achieve agreements on different results.

Table I demonstrates the distribution of ten major vulnerabil-
ity types through the above analysis process. A brief description
of each type is listed as follows:
Buffer error happens when software reads or writes a memory
location that is outside of the intended boundary of the buffer
and associated with other variables, data structures, or internal
program data. This group includes buffer copy without input
size checking (i.e., classical buffer overflow), out-of-bounds
read/write, and access of uninitialized pointer. It may result
in arbitrary code execution, control flow alteration, sensitive
information exposure, or system crash.
Resource management error is composed of uncontrolled
resource consumption, improper resource shutdown or release,
race condition, double free, use after free, etc. It may result
in the modification of unexpected memory locations, arbitrary

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: George Mason University. Downloaded on August 23,2020 at 02:48:30 UTC from IEEE Xplore. Restrictions apply.

 BufferError

 ResMgmtError

InputValidation

 NumericError

 BrkAccessCtrl

 InfoExposure

 PathTraversal

 CryptoIssue

 Injection

 ImproperAuth

 0 5 10 15 20 25 30 35 40 45
(a) File Number

 BufferError

 ResMgmtError

InputValidation

 NumericError

 BrkAccessCtrl

 InfoExposure

 PathTraversal

 CryptoIssue

 Injection

 ImproperAuth

 0 10 20 30 40 50
(b) Function Number

 BufferError

 ResMgmtError

InputValidation

 NumericError

 BrkAccessCtrl

 InfoExposure

 PathTraversal

 CryptoIssue

 Injection

 ImproperAuth

 0 25 50 75 100 125
(c) Hunk Number

Fig. 1. The patch localization at the file/function/hunk levels

code execution, or crash.
Improper input validation exists in the software when input is
not validated properly. As a result, an attacker could manipulate
the input to make it an unexpected form. It will lead to
control/data flow alteration or arbitrary code execution.
Numeric error refers to integer underflow/overflow, incorrect
conversion between numeric types, improper validation of array
index, comparison without correct check, etc. It can cause
sensitive content exposure or arbitrary code execution.
Broken access control includes improper access control and
permission issues like missing authentication for critical func-
tion, use of hard-coded credentials, etc. This allows attackers to
access unauthorized functionality or data, such as gaining priv-
ileges, accessing sensitive information, executing commands,
evading detection, etc.
Information exposure consists of intentional and unintentional
disclosure of information to some subjects that are not autho-
rized to access. The severity mainly depends on the exposed
information itself, e.g., financial data could be used for fraud.
Path traversal includes pathname traversal and link following
that refer to the manipulation of special elements (such as ../
separators) of a path to escape outside of the restricted directory
or access an unintended resource.
Cryptography issue covers various kinds of improper use of
cryptography like missing or inadequate encryption of sensitive
data, use of a broken or risky cryptographic algorithm, key
management errors, etc.
Injection comprises OS command injection, cross-site scripting
(XSS), SQL injection, and code injection.
Improper authentication occurs when the software incorrectly
or improperly configures user and session authentication. It
may allow attackers to compromise sensitive information like
password, take control of users’ accounts, etc.

IV. SECURITY PATCH ANALYSIS

Instead of distinguishing security patches from non-security
ones [4], [5], we aim to further classify among different types of
security patches, since specific types of security patches should
be applied with a higher priority than others in real-world
scenarios. We characterize different types of security patches
from three aspects: patch localization, patch complexity, and
patch flow changes.

A. Patch Localization

Patch localization is an important characteristic that has been
leveraged by many vulnerability related research. Some fault
detecting approaches make the assumption that each buggy file
contains exactly one line of faulty code [14]. Current automatic
patching tools mainly focus on function-level patching with
the assumption that vulnerable code is within one function
[5], [15]. Some patch presence tools only deal with intra-
procedural problems [6]. However, a vulnerability may locate
in multiple functions with multiple non-aggregated lines that
have dependencies among them, which limits the use of these
techniques. In this paper, we analyze the patch localization for
each type and our results provide new insights on the future
research direction of locating and patching vulnerabilities.

We calculate the number of modified files, functions, and
hunks for each type of security patches. Figure 1 shows the
distribution of them and there are some new observations:

• Most of buffer error, numeric error, and information
exposure vulnerabilities could be fixed within one file
as shown in Figure 1(a), since similar functionalities
are more likely to be aggregated in the same file. In
contrast, applying patches for cryptographic issues and
authentication errors requires careful analysis to avoid
side effects on functionalities located in different files.

• 7 out of 10 vulnerability types have at least a quarter
of security patches involving two or more functions (see
Figure 1(b)), which is contrary to previous claims that
most security patches only need to fix one function [5],
[15]. Moreover, over half of security patches for broken
access, path traversal, and cryptographic issues need to
modify multiple functions. Therefore, for the system that
bundles cryptography libraries or enforces access control
mechanisms, previous works may raise non-negligible
false negatives since inter-function vulnerabilities are to-
tally ignored.

• Vulnerable code is usually not aggregated lines. That is
because only consecutive modified lines would be a hunk
and most security patches consist of multiple hunks (see
Figure 1(c)). For human experts, patching such vulner-
abilities requires a better understanding of context. As
exceptions, the security patches of information exposure
and injection vulnerabilities are more likely to contain

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: George Mason University. Downloaded on August 23,2020 at 02:48:30 UTC from IEEE Xplore. Restrictions apply.

 BufferError

 ResMgmtError

InputValidation

 NumericError

 BrkAccessCtrl

 InfoExposure

 PathTraversal

 CryptoIssue

 Injection

 ImproperAuth

 0 0.5 1 1.5 2 2.5 3 3.5 4

Addition

Deletion

Modification

(a) File Number

 BufferError

 ResMgmtError

InputValidation

 NumericError

 BrkAccessCtrl

 InfoExposure

 PathTraversal

 CryptoIssue

 Injection

 ImproperAuth

 0 1 2 3 4 5 6

Addition

Deletion

Modification

(b) Function Number

 BufferError

 ResMgmtError

InputValidation

 NumericError

 BrkAccessCtrl

 InfoExposure

 PathTraversal

 CryptoIssue

 Injection

 ImproperAuth

 0 2 4 6 8 10 12 14 16 18

Addition

Deletion

Modification

(c) Hunk Number

Fig. 2. Number of changes at the file/function/hunk levels

only one hunk, since those vulnerabilities can be easily
fixed by adding a sanity check once they are located.

Moreover, we use the security fix entropy [27] to quantify
the localization of different security patches:

Hn(P) = −
n∑

k=1

(pk · logn pk),

where pk > 0 (1 ≤ k ≤ n) and
∑n

k=1 pk = 1. For instance, if
a security patch modifies 3 functions with 1, 2, and 3 hunks,
respectively, the p1, p2, and p3 would be 1/6, 1/3, and 1/2.
If the probability of modifying a specific function is 1 and
all others are 0, the entropy will be minimal and means the
fix is most localized. If multiple functions are involved in a
patch and the number of hunks modified in each file is the
same, the entropy will be maximal and this security patch is
least localized. This metric is different from simply counting
the numbers of functions and hunks. Considering two security
patches where A modifies three functions with one, one, and
four hunks and B modifies three functions with two, two, and
two hunks, the latter two metrics evaluate them as the same
since their number of functions and hunks are equal. However,
patch A aggregates on one of three functions, which is less
localized than patch B that modifies three functions equally.

Figure 3 (on next page) depicts the cumulative distribution
functions (CDFs) of Shannon Entropy for each type of security
patches. For 7 out of 10 vulnerability types, most security code
changes are localized within one function or aggregated in
one out of multiple functions since over 50% of them have a
zero or small entropy. In contrast, patches for broken access
control, path traversal, and cryptographic issues are more
likely to involve multiple functions with evenly distributed
modifications. For vulnerability detection techniques, in the
former cases, it would be easy to first locate the main cause
of the fault and then track the potentially effected part [28].
In the latter cases, the vulnerabilities are usually generated by
the interaction among several seemingly benign parts, which is
harder to be detected.

B. Patch Complexity

After locating the vulnerable code, automatic program repair
(APR) techniques use search-based or brute-force approaches
to generate candidates until a candidate passes the whole test
suites [29], [30]. For vulnerabilities with high complexity, the

search space of the general solution is large, which leads
to the generation of an explosive number of possible fixes.
To avoid this, it is necessary to recognize the vulnerabilities
whose patches are likely to be complex and develop more
suitable techniques for them [31]. Besides, the complexity of
general patches has been widely used to assist code audits.
VCCFinder discovers that vulnerability contributing commits
make more additions, deletions, and modifications on average
compared with other commits [20]. Patch complexity has also
been adopted as features to distinguish bug or even security
fixes from other patches [25], [32].

To quantify the security patch complexity, we calculate the
number of deletion, addition, and modification at file, function,
and hunk levels. The average results are shown in Figure 2.
The deletion/addition refers to the whole hunk, function, or
file that only contains deleted/added lines. The modification
(i.e., update) is counted when it includes both deleted and
added lines. At the file level (Figure 2(a)), fixing improper
input validation is more likely to delete files. The number of
deleted and added files are similar, which means most input
validation patches tend to rewrite files instead of modifying
existing files. On the contrary, repairing numeric errors and
cryptographic issues usually does not need to delete files.
In such cases, although the numbers of added files for most
vulnerabilities are similar, with less deleted files, patches for
numeric errors and cryptographic issues are more likely to add
“real” new files (not the rewritten ones). At the function level
(Figure 2(b)), besides the improper input validation, patches for
path traversal replace many vulnerable functions with rewritten
ones. Patching buffer errors, numeric errors, cryptographic
issues, and injection mainly depends on adding brand new
functions and modifying existing functions. At the hunk level
(Figure 2(c)), there are no significant differences among most
types of security patches. An exception is patching information
exposure requires a tripled number of modifications than others,
while with a similar number of added and deleted hunks.

We also choose lines of code (LOC) and characters of code
as metrics in our scenario, as done in previous works [4],
[33]–[35]. We treat the lines with − in the patch as deletion
and lines with + as addition. The character number is the
sum of characters in corresponding lines. Figure 5 presents
the average number of lines and character changes. The results
drawn from the left and right figures are consistent for most
kinds of vulnerability fixes. Note that the number of deletion

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: George Mason University. Downloaded on August 23,2020 at 02:48:30 UTC from IEEE Xplore. Restrictions apply.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Shannon Entropy

BufferError
ResMgmtError
InputValidation
NumericError
BrkAccessCtrl

InfoExposure
PathTraversal
CryptoIssue
Injection
ImproperAuth

Fig. 3. CDFs of entropy

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1k 2k 3k 4k 5k 6k

C
D

F

Levenshtein Distance

BufferError
ResMgmtError
InputValidation
NumericError
BrkAccessCtrl

InfoExposure
PathTraversal
CryptoIssue
Injection
ImproperAuth

Fig. 4. Levenshtein distance of security patches

 BufferError

 ResMgmtError

InputValidation

 NumericError

 BrkAccessCtrl

 InfoExposure

 PathTraversal

 CryptoIssue

 Injection

 ImproperAuth

 0 10 20 30 40 50 60 70

Deletion

Addition

(a) Line Number

 BufferError

 ResMgmtError

InputValidation

 NumericError

 BrkAccessCtrl

 InfoExposure

 PathTraversal

 CryptoIssue

 Injection

 ImproperAuth

0 0.5k 1k 1.5k 2k

Deletion

Addition

(b) Character Number

Fig. 5. Average numbers of line and character changes

changes for cryptographic issues is at the medium level while
the largest number of additions are required. Similarly, the net
number of addition (i.e., addition minus deletion) for improper
authentication is also large due to a small deletion number and
a medium addition number.

We find that the number of deletion and addition are very
close at both line and character levels for information exposure,
path traversal, and injection; however, we cannot say their
modifications are slight since we do not know if the contents of
deleted and added lines are similar. Since different program-
mers may have various styles of programming when imple-
menting the software functionalities, it may not be accurate to
only count the number of added and deleted lines. Also, it is
unfair to equal a patch with ten completely modified lines with
another patch with slight changes (e.g., operator) on ten lines.
Therefore, we further quantify the patch complexity using the
Levenshtein Distance [36], which is the total character number
of deletions, insertions, and substitutions required to transform
the vulnerable code to patched one. Since these operations are
common and basic in security patches, Levenshtein Distance
is intuitively a good criterion to measure the patch complexity.
For instance, if a security patch changes > to >=, then its
Levenshtein Distance should be one. Figure 4 shows the CDFs
of Levenshtein Distance for each type of security patches.
For most vulnerability types, 80% of their security patches
contain small modifications. The exceptions are path traversal,
cryptographic issue, and improper authentication that require a
large number of modifications. When using the LOC as metrics,
security patches for information exposure, path traversal, and

injection seem not complex. Using Levenshtein Distance, we
can find that the patch complex for information exposure and
path traversal are still simple. In other words, though their fixes
involve many lines, corresponding modifications are small. In
contrast, security patches for injection make more intensive
modifications to existing code.

C. Patch Flow

It is critical to study the control flow changes in security
patches since at least 60% security patches add or update
conditional statements [37]. Here we aim to figure out what
kinds of security patches are more likely to introduce certain
types of control flow changes [6].

To quantify the flow changes in each type of security patches,
we consider the conditional, loop, and jump statements. We
implement a lexer and the detection results are presented in
Figure 6. Usually, control flow will be modified after patching.
The most prevalent flow changes are caused by conditional
statements and the least one is due to jump statements. Fixing
buffer errors, improper input validation, numeric errors, broken
access, path traversal, and injection usually does not introduce
new conditional statements. Based on our observation, the
modifications of them are likely to be made on improving
existing sanity checks (e.g., add or change some conditions).
Resource management errors are mainly fixed by adding more
conditional statements to limit the use of resources. Security
patches for information exposure involve much more control
flow statements compared with others. The cryptographic is-
sues contain few loops and jumps in their vulnerable code

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: George Mason University. Downloaded on August 23,2020 at 02:48:30 UTC from IEEE Xplore. Restrictions apply.

 BufferError

 ResMgmtError

InputValidation

 NumericError

 BrkAccessCtrl

 InfoExposure

 PathTraversal

 CryptoIssue

 Injection

 ImproperAuth

 0 5 10 15 20 25 30 35

if

loop

jump

(a) Average Number of Deletion

 BufferError

 ResMgmtError

InputValidation

 NumericError

 BrkAccessCtrl

 InfoExposure

 PathTraversal

 CryptoIssue

 Injection

 ImproperAuth

 0 5 10 15 20 25 30 35

if

loop

jump

(b) Average Number of Addition

Fig. 6. Flow changes in deletion and addition of security patches

and add a lot when patching, which is chiefly imported from
the newly added functions. Improper authentication commonly
results from a lack of proper sanity checking so that many
conditional statements are added in the patched version.

V. SECURITY PATCH CLASSIFICATION

To help understand the vulnerabilities fixed in given patches,
we develop a machine learning-based system to classify secu-
rity patches into corresponding vulnerability types, utilizing the
varying characteristics of different types of security patches.

A. Feature Selection

We select a set of features from the metrics introduced in
the last section plus the keyword features to characterize the
security patches.

• Patch Localization Features consist of the number of
modified files, the number of modified functions, the
number of hunks, and Shannon Entropy of a security
patch.

• Patch Complexity Features include the number of deletion,
addition, and modification at file, function, and hunk level
(addition/deletion refers to part with only added/deleted
code, modification (i.e., update) that contains both deleted
and added part); the number of lines and characters in
addition (lines with +) and deletion (lines with −); and
Levenshtein Distance between deletion and addition.

• Patch Flow Features comprise the number of condition,
loop, and jump statements in addition and deletion.

• Keyword Features consider the number of each one in the
C/C++ keyword list and library function list. We also take
into account some “keywords” (e.g., len, uid, etc.) that
are project-independent but may have strong correlations
with specific kinds of security patches. Since there are
thousands of features in this category, we rank these
features with Mutual Information and choose a set of most
useful ones.

B. System Modeling

Recall that Table I shows that our datasets are composed
of ten imbalanced classes of security patches. To achieve the
best performance, we apply multiple classification algorithms
and balancing techniques and finally adopt Random Forest

classifier with Synthetic Minority Over-Sampling Technique
(SMOTE) and Class Balancer. We also conduct experiments
with other classifiers (e.g., Support Vector Machine (SVM),
Logistic Regression, and etc.), but their performances are not
satisfactory and/or incur too long training time.

Random Forest is an ensemble learning method that is built
up with multiple decision trees, where the leaves represent
the predicted labels and the branches represent the decision
conditions of multiple features. Random forest utilizes feature
bagging that randomly selects a subset of features at each
candidate split and can handle the data with relatively high
dimensional features without feature selection.

To solve the imbalance problem, we use the synthetic
minority over-sampling technique SMOTE [38] to re-sample
the dataset. SMOTE synthesizes new samples for the minority
class by randomly selecting a point in the line segment be-
tween a given sample and one of its k nearest neighbors in
the feature space. Synthetic samples may provide additional
information for classification but also introduce extra noise.
The performance of the classifier may become worse when the
oversampling rate is too high. Instead, we use Class Balancer
to re-weight the instances of some classes to make sure each
class will have the same total weights or reduce the weight
difference among classes. When the weight of a class increases,
misclassification of its instance will lead to more penalization,
which raises the importance of minority class to avoid only
predicting the majority class.

C. System Evaluation

We combine the Random Forest model with different bal-
ancing techniques and conduct 10-fold cross validation. Experi-
mental results are shown in Table II. We see that Random Forest
with Class Balancer presents the best results - 55% accuracy,
i.e., given a security patch, our model could successfully
classify it into one of ten classes with 55% possibility.

Since we are the first to classify the security patches into
the corresponding vulnerability types, our experimental results
cannot be directly compared with other works. Actually, there
are some works on classifying commits (no matter security or
non-security patches) into maintenance categories [16], [17].
We can have a rough comparison with those similar works to
help evaluate our results. Hindle et al.’s work [17] is conducted

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: George Mason University. Downloaded on August 23,2020 at 02:48:30 UTC from IEEE Xplore. Restrictions apply.

TABLE II
PERFORMANCE OF ML MODELS ON TESTING DATASET

ML Models Accuracy F1 Score

Random Forest 51.63% 0.455
Random Forest + SMOTE 54.54% 0.485

Random Forest + Class Balancer 54.75% 0.501

on single repositories and the accuracy is around 50%. Levin
et al. [16] conduct experiments on a dataset that is composed
of only nine projects and the maximum accuracy is 54%. It is
clear the difference within different kinds of security patches is
smaller than that among code changes of different maintenance
activities, and keeping the model’s generalization in the large-
scale dataset with hundreds of projects is harder than several
or even single repositories. Thus, our task is more complex
than previous works. Besides, Hindle et al.’s solution is limited
to code changes with well-maintained commit messages (i.e.,
change log), while our approach applies to all security patches
since all the features are extracted from source code only.
Also, although our dataset is highly imbalanced, our model
does not simply predict any instances into the majority class
(i.e., buffer error). Figure 7 shows that the area under the
ROC curve (AUC) of each vulnerability type. The AUCs of
cryptographic error, path traversal, information exposure, and
broken access control are 0.928, 0.926, 0.873, and 0.852 that
are larger than buffer error (0.823) and all close to one.
The AUCs of other types are also acceptable. Therefore, our
model is able to deal with various types of security patches
with good performance. Also, we argue that the performance
of our classifier could be further improved by better-defined
vulnerability types. Currently, our vulnerability categorization
is built on the top of CWE slices so that we can adopt CWE
types of security patches for vulnerabilities in NVD as ground
truth. But there may be some ambiguity and overlap among
current types, e.g., buffer error, improper input validation, and
code injection. In this case, our model may fail to distinguish
among them. If NVD provides a better-defined vulnerability
categorization, our results could be further improved.

VI. DISCUSSION

We discuss different scenarios where our system could be
useful and describe some limitations as well as future work.

A. Usability

The security changes of large software are usually not
well documented due to different analysis results from dif-
ferent maintainers and limited efforts to handle too many
code changes throughout the life cycle. Our system could be
integrated into the software maintenance system like GitHub
to help eliminate the biases and save human efforts.

Our system is useful for developers whose software bundles
multiple third-party libraries. It is well-known that it is hard
to timely patch all known vulnerabilities in practice, since
(i) some patches are not explicitly marked as a security fix

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
it

iv
e

R
at

e

False Positive Rate

BufferError
ResMgmtError
InputValidation
NumericError
BrkAccessCtrl

InfoExposure
PathTraversal
CryptoIssue
Injection
ImproperAuth

Fig. 7. ROC curve for Random Forest with Class Balancer

and do not provide any vulnerability type information and (ii)
customization on the source code makes security patches hard
to be directly applied. Under such circumstances, our system
can help identify the security patch types and prioritize the
applications of specific security patches.

Our method could also be extended for the vulnerability
tracking system like NVD where security patches are presented
in each vulnerability entry (if available). NVD adopts Common
Weakness Enumeration (CWE) IDs to represent vulnerability
types and its categorization varies a lot each year. For instance,
NVD embraces a new CWE slice in 2019 but only updates
all the vulnerabilities after 2018 since analyst efforts are not
enough to manage the huge number of vulnerabilities. But
since vulnerability tracking systems feed valuable information
to researches and practices, inconsistency between new and
old vulnerability entries should be avoided. Our system could
be extended to employ security patches with new CWE IDs
when training the model. After that, the model is able to label
security patches for outdated entries with new CWE IDs so
that the vulnerability type for outdated entries will be updated.

B. Limitations

There are some limitations in our current work. The dataset
collected from NVD may still be biased to some specific types
of vulnerabilities (severe or highly exploitable ones). We argue
that since the CVE list covers numerous cyber security products
all over the world, our model could be applicable to most se-
curity patches. Also, even though our current model is in favor
of severe or highly exploitable vulnerability, it is acceptable
since such vulnerabilities should be taken precedence over other
vulnerabilities in practice.

Since different programming languages have different syn-
tax, our work currently focuses on C/C++ language. However,
our system could be extended to other programming languages
by modifying syntax parsing related features according to the
targeted programming languages. We leave the extensions to
other languages as future work.

VII. CONCLUSION

This paper is the first one that looks into the characteristics
of each type of security patches and proposes an automatic
machine learning approach to classify security patches into

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: George Mason University. Downloaded on August 23,2020 at 02:48:30 UTC from IEEE Xplore. Restrictions apply.

vulnerability types. To collect adequate security patches for
empirical analysis, we query the NVD and manually go through
thousands of patches to filter out the noise. To achieve an in-
depth analysis on the nature of security patches by type, we
perform an empirical study on ten most common vulnerability
types in C/C++ from three perspectives: patch localization,
patch complexity, and patch flow changes. The analysis results
confirm the importance of considering different types of se-
curity patches on vulnerability detection&mitigation. Further,
we implement a machine learning-based approach that can be
integrated into current vulnerability tracking systems to relieve
software maintainers’ burden on manual analysis and reduce
the inconsistency caused by human subjectivity. The evaluation
results show that our approach can achieve good performance.

REFERENCES

[1] Synopsys, “2018 Open Source Software and Risk Analysis Report,”
https://www.synopsys.com/content/dam/synopsys/sigassets/reports/2018-
ossra.pdf, 2018.

[2] White Source Software, “The state of open source vulnerabilities manage-
ment,” https://www.whitesourcesoftware.com/open-source-vulnerability-
management-report/, 2019.

[3] S. Keßler and P. Alpar, “Customization of open source software in
companies,” in IFIP International Conference on Open Source Systems.
Springer, 2009, pp. 129–142.

[4] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance
bugs: a case study on firefox,” in Proceedings of the 8th working
conference on mining software repositories. ACM, 2011, pp. 93–102.

[5] F. Li and V. Paxson, “A large-scale empirical study of security patches,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 2201–2215.

[6] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song, “Spain:
security patch analysis for binaries towards understanding the pain and
pills,” in Proceedings of the 39th International Conference on Software
Engineering. IEEE Press, 2017, pp. 462–472.

[7] Alexander Leonov, “CWEs in NVD CVE feed: analysis and com-
plaints,” https://avleonov.com/2017/10/21/cwes-in-nvd-cve-feed-analysis-
and-complaints, 2017.

[8] Y. Dong, W. Guo, Y. Chen, X. Xing, Y. Zhang, and G. Wang, “Towards
the detection of inconsistencies in public security vulnerability reports,”
in 28th USENIX Security Symposium (USENIX Security 19), 2019, pp.
869–885.

[9] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in
defect prediction,” in 2011 33rd International Conference on Software
Engineering (ICSE). IEEE, 2011, pp. 481–490.

[10] MITRE, “2019 cwe top 25 most dangerous software errors,”
https://cwe.mitre.org/top25/archive/2019/2019 cwe top25.html, 2019.

[11] OWASP, “Owasp top 10 application security risks - 2017,”
https://www.owasp.org/index.php/Top 10-2017 Top 10, 2017.

[12] H. Zhong and Z. Su, “An empirical study on real bug fixes,” in Pro-
ceedings of the 37th International Conference on Software Engineering-
Volume 1. IEEE Press, 2015, pp. 913–923.

[13] M. Soto, F. Thung, C.-P. Wong, C. Le Goues, and D. Lo, “A deeper
look into bug fixes: patterns, replacements, deletions, and additions,” in
Proceedings of the 13th International Conference on Mining Software
Repositories. ACM, 2016, pp. 512–515.

[14] W. E. Wong and V. Debroy, “A survey of software fault localization,”
Department of Computer Science, University of Texas at Dallas, Tech.
Rep. UTDCS-45, vol. 9, 2009.

[15] R. Duan, A. Bijlani, Y. Ji, O. Alrawi, Y. Xiong, M. Ike, B. Saltaformaggio,
and W. Lee, “Automating patching of vulnerable open-source software
versions in application binaries.”

[16] S. Levin and A. Yehudai, “Boosting automatic commit classification into
maintenance activities by utilizing source code changes,” in Proceedings
of the 13th International Conference on Predictive Models and Data
Analytics in Software Engineering. ACM, 2017, pp. 97–106.

[17] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt, “Automatic
classication of large changes into maintenance categories,” in 2009 IEEE
17th International Conference on Program Comprehension. IEEE, 2009,
pp. 30–39.

[18] S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach for
vulnerable code clone discovery,” in 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 595–614.

[19] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “Vulpecker: an automated
vulnerability detection system based on code similarity analysis,” in
Proceedings of the 32nd Annual Conference on Computer Security
Applications. ACM, 2016, pp. 201–213.

[20] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl,
and Y. Acar, “VCCFinder: finding potential vulnerabilities in open-source
projects to assist code audits,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015,
pp. 426–437.

[21] H. Zhang and Z. Qian, “Precise and accurate patch presence test for
binaries,” in 27th USENIX Security Symposium (USENIX Security 18),
2018, pp. 887–902.

[22] D. Arya, W. Wang, J. L. Guo, and J. Cheng, “Analysis and detection
of information types of open source software issue discussions,” in Pro-
ceedings of the 41st International Conference on Software Engineering.
IEEE Press, 2019, pp. 454–464.

[23] E. Aghaei and E. Al-shaer, “Threatzoom: neural network for automated
vulnerability mitigation,” in Proceedings of the 6th Annual Symposium
on Hot Topics in the Science of Security. ACM, 2019, p. 24.

[24] CVE Details, “Vulnerabilities By Type,”
https://www.cvedetails.com/vulnerabilities-by-types.php, 2019.

[25] X. Wang, K. Sun, A. Batcheller, and S. Jajodia, “Detecting” 0-day”
vulnerability: An empirical study of secret security patch in oss,” in 2019
49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 2019, pp. 485–492.

[26] NIST, “NVD CWE Slice,” https://nvd.nist.gov/vuln/categories, 2019.
[27] A. E. Hassan, “Predicting faults using the complexity of code changes,”

in Proceedings of the 31st International Conference on Software Engi-
neering. IEEE Computer Society, 2009, pp. 78–88.

[28] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detec-
tion,” arXiv preprint arXiv:1801.01681, 2018.

[29] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random
search on automated program repair,” in Proceedings of the 36th Inter-
national Conference on Software Engineering, 2014, pp. 254–265.

[30] C. Liu, J. Yang, L. Tan, and M. Hafiz, “R2fix: Automatically generating
bug fixes from bug reports,” in 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation. IEEE, 2013, pp. 282–
291.

[31] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” IEEE Transactions on Software Engineering, vol. 45, no. 1, pp.
34–67, 2017.

[32] Y. Tian, J. Lawall, and D. Lo, “Identifying linux bug fixing patches,”
in 2012 34th international conference on software engineering (ICSE).
IEEE, 2012, pp. 386–396.

[33] Z. Huang, M. DAngelo, D. Miyani, and D. Lie, “Talos: Neutralizing
vulnerabilities with security workarounds for rapid response,” in 2016
IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp. 618–
635.

[34] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, “The
design of bug fixes,” in 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 2013, pp. 332–341.

[35] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” ACM sigsoft software engineering notes, vol. 30, no. 4, pp. 1–5,
2005.

[36] V. Pieterse and P. E. Black, Algorithms and Theory of Computation
Handbook. CRC Press LLC, 1999.

[37] K. Lu, A. Pakki, and Q. Wu, “Detecting missing-check bugs via
semantic-and context-aware criticalness and constraints inferences,” in
28th USENIX Security Symposium (USENIX Security 19), 2019, pp.
1769–1786.

[38] L. Kumar and A. Sureka, “Application of lssvm and smote on seven
open source projects for predicting refactoring at class level,” in 2017
24th Asia-Pacific Software Engineering Conference (APSEC), Dec 2017,
pp. 90–99.

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: George Mason University. Downloaded on August 23,2020 at 02:48:30 UTC from IEEE Xplore. Restrictions apply.

