
1

Graph-based Security Patch Detection
with Enriched Code Semantics

Faculty Members: Kun Sun, Sushil Jajodia

Students: Shu Wang, Xinda Wang

George Mason University

04/12/2022

● Problem: vendors may silently release security patches

● Limitations of existing solutions:
○ Lack of program semantics.
○ High false-positive rate.

● Our Work: help identify security patches with graphs.
○ Input: GitHub commits.
○ Output: tells if the given commit is a security patch.

2

Motivation

2

● Generate PatchCPG for a target patch;
● Embed PatchCPG into a numeric format;
● Detect security patches with Graph Neural Networks.

3

PatchSPD Overview

3

● Challenge: how to construct PatchCPG?

4

From Patch to Graph

4

5

Patch

Pre-patch function

Post-patch function

Pre-patch CPG

Post-patch CPG 5

•

6

Step1: identify the node types (delete, added, context)

Pre-patched CPG Post-patched CPG

Node:
(4, deleted)
(1, context)
(2, context)
(3, context)
(5, context)
(6, context)

Node:
(4, added)
(7, added)
(8, added)
(1, context)
(2, context)
(3, context)
(5, context)
(6, context)

1

2 3

4

5 6

1

2 3

4

5 6 7

8

7

6

7

Step 2: identify the edge types (delete, added, context)

7

Pre-patched CPG Post-patched CPG

7

1

2 3

4

5 6

1

2 3

4

5 6

8Node:
(4, deleted)
(1, context)
(2, context)
(3, context)
(5, context)
(6, context)

Node:
(4, added)
(7, added)
(8, added)
(1, context)
(2, context)
(3, context)
(5, context)
(6, context)

Edge:
(3, 4, deleted)
(4, 5, deleted)
(4, 6, deleted)
(1, 2, context)
(1, 3, context)

Edge:
(3, 4, added)
(4, 5, added)
(4, 6, added)
(4, 7, added)
(7, 8, added)
(1, 2, context)
(1, 3, context)

7

8

Step 3: re-map node IDs and merge edge sets of two CPGs

8

Edge:
(-3, -4, deleted)
(-4, -6, deleted)
(-4, -7, deleted)
(-3, -5, added)
(-5, -6, added)
(-5, -7, added)
(-5, -8, added)
(-8, -9, added)
(-1, -2, context)
(-1, -3, context)

-1

-2 -3

-4 -5

-6 -7 -8

-9

Merged CPG

Map:
(4, -4)
(1, -1)
(2, -2)
(3, -3)
(5, -6)
(6, -7)

Map:
(4, -5)
(1, -1)
(2, -2)
(3, -3)
(5, -6)
(6, -7)
(7, -8)
(8, -9)

Edge:
(3, 4, deleted)
(4, 5, deleted)
(4, 6, deleted)
(1, 2, context)
(1, 3, context)

Edge:
(3, 4, added)
(4, 5, added)
(4, 6, added)
(4, 7, added)
(7, 8, added)
(1, 2, context)
(1, 3, context)

merge

8

● Edge: (start_ID, end_ID, type, version)

● Node: (node_ID, code, version)

9

PatchCPG Storage Format

9

● The graph is too large.

● Not all the contexts are useful.

Solution: we prune the graph by

code slicing (Only considering

context nodes directly connected

to deleted/added ones).

10

Code Slicing: Size Reduction of Patch-CPG

10

A mid-size PatchCPG sample (Ninf-AST) from the patch
torvalds.linux.fd6040ed57d8f200ab0cc2abf706c54995a48370

● Edge Embedding

○ 5-dimensional binary vector.
○ 2 bits: represent if the edge belongs to pre/post-patch version.
○ 3 bits: one-hot vector represent the edge type (CDG, DDG, AST).

e.g., [1,1,0,1,0] means it is a context edge of data dependency.

11

Embeddings for Patch-CPGs

11

● Node Embedding

○ 20-dimensional numeric features.
○ extracted from the statement in the node.
○ vulnerability-relevant features.
■ code snippet metadata
■ Identifier and literal features
■ Control flow features
■ Operator features
■ API features

12

Embeddings for Patch-CPGs

12

● pointer/array operations are

related to OOB access, NULL

pointer dereference;

● arithmetic expressions are

related to integer overflow.

13

Embeddings for Patch-CPGs

13

● Graph Convolution & Pooling: obtain graph embedding.
● Multi-Layer Perceptron: obtain the final prediction.

14

PatchGNN

14

● Training phase
○ Training dataset: PatchDB (38K)
■ https://sunlab-gmu.github.io/PatchDB/

○ Adam optimizer and cross-entropy loss function.
○ Yield a Graph Neural Network (GNN) model.

● Inference phase
○ Given a patch, our PatchGNN model tells if it is security-related.
○ Case study: NGINX, Xen, OpenSSL, and ImageMagick.

15

PatchGNN Training and Inference

15

https://sunlab-gmu.github.io/PatchDB/

● PatchRNN considers both source-code and text information.

16

PatchRNN Architecture

16

17

Experimental Results (Comparing with TwinRNN)

17

Method Dataset
General Metrics Special Metrics

Accuracy F1-score Precision F.P. Rate

TwinRNN
PatchSPD 69.60% 0.461 48.45% 19.67%

SPI-DB 56.37% 0.512 48.07% 41.57%

GraphSPD
PatchSPD 80.39% 0.557 77.27% 5.05%

SPI-DB 63.04% 0.503 63.96% 19.16%

18

Experimental Results (Comparing with Vulnerability Detection)

18

Method #Vul_prepatch #Vul_postpatch #SecPatch TP Rate

CppCheck 3 1 2 0.54%

flawfinder 109 108 1 0.27%

ReDeBug 29 29 0 0.00%

YUDDY 22 16 21 5.71%

VulDeePecker 3 0 3 0.82%

GraphSPD - - 53 14.40%

● NGINX: detect 21 security patches.

19

Case Study

Changes w/ CVE Total Commits Valid Commits Detected SP Confirmed SP Precision

1.19.x 3 180 217 7 6 86%

1.17.x 3 134 82 4 3 75%

1.15.x 1 203 120 7 4 57%

1.13.x 1 270 157 9 8 89%

Sum. 8 787 486 27 21 78%

19

● Xen: detect 29 security patches (Precision: 55%).

● OpenSSL: detect 45 security patches (Precision: 66%).

● ImageMagick: detect 6 security patches (Precision: 46.2%).

20

Case Study

20

21

21

Questions?

