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Motivation & Problem
● Value and Vulnerability of DNN Models.

○ High Value IP: Developing DNNs is incredibly resource-intensive.

■ massive data collection & curation.

■ expensive, time-consuming training.

■ significant competitive advantage.

○ The Threat: Unauthorized use, resale, and model theft are major concerns.

○ Existing Solution: Digital watermarking to prove ownership.
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Background: Dynamic Watermarking
Dynamic watermarking is a common backdoor-based approach for IP protection.

● The owner creates a secret “trigger set” of inputs and target labels.

● The model is trained on both the original task data and this secret trigger set.

● The final model behaves normally 

on standard inputs but produces 

the owner’s secret labels when 

given the trigger inputs.
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Two Core Challenges
● Security Flaws: The Ambiguity Attack.

○ Attackers can forge their own watermark onto a stolen model.

○ They use optimization techniques (adversarial learning) to find a new set of triggers that 

produce their desired labels.

○ Ownership dispute: if two parties can “prove” ownership with two different watermarks, the 

claims becomes impossible to resolve.

● Vague Verification: The Unprovable Claim.
○ The criteria for verifying a watermark is often unclear and statistically weak.

○ It is hard to calculate the probability of a random match. 
■ Models have highly skewed classification probabilities for random inputs

(many classes are never chosen).

○ Existing methods cannot provide high-confidence proof (i.e., a very low p-value).

4



Our Solution: ChainMarks
● We propose ChainMarks, a scheme that directly addresses these challenges.

● Key Ideas:

○ Defeat Ambiguity with a Cryptographic Chain

■ Trigger inputs are not independent but linked sequentially by a one-way hash function.

■ The structure is computationally infeasible to forge using gradient-based optimization.

○ Ensure Authenticity with a Digital Signature

■ The target labels are derived directly from the owner's digital signature.

○ Provide Rigorous Proof for Decision Threshold

■ We introduce a two-phase Monte Carlo method to accurately calculate the decision 

threshold, enabling high-confidence verification.
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ChainMarks: Watermark Generation & Embedding
● Generate Trigger Chain

○ Start with a secret key (    ). Repeatedly apply a hash function      to create a chain of trigger 

inputs      :                                                  .

● Generate Target Labels
○ Convert the owner’s Digital Signature (    )

into a base-    number (     is #classes). 

○ The digits         become the target labels.

● Embed Watermark
○ Train the DNN on the original dataset 

combined with the watermark dataset

                                     .
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ChainMarks: Watermark Verification
● Regenerate Triggers

○ The verifier regenerates the trigger chain 

with the secret Seed Key (     ).

● Query Model
○ The triggers are fed into the suspect model to

to get predicted labels         .

● Compare Signatures
○ The Hamming distance               between the

predicted and original labels is calculated.

● Decision
○ If the distance is above a threshold, ownership

is confirmed:                           .
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The Crux: How to Set the Decision Threshold θ?
Threshold must be statistically robust to prevent attackers from matching it by pure chance.

● Question: What is the probability that a random seed key and random signature would produce 
m or more matches on a given model?

● Difficulty: This probability depends on model's classification behavior for random, noise-like inputs.

● Observation: This behavior is extremely skewed. 

○ For random inputs, some classes are predicted frequently, while others are never predicted.
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For a ResNet-18 on CIFAR-100, 
49 out of 100 classes were never 
hit by 10 million random inputs.Skewed probability distribution across different classes for DNN 

models trained on CIFAR-10/CIFAR-100



Our Method: Two-Phase Monte Carlo Estimation
Standard estimation fails due to the zero-hit classes. Our two-phase approach solves this.

Phase 1: Initial Distribution & Zero-Hit Set

● Feed a large number      (e.g., 10 million) of random inputs into the model.

● Calculate initial probabilities      for all classes    that were hit.

● Identify the set of classes      that had zero hits.

Phase 2: Estimate Probability of the Zero-Hit Set

● Feed more random inputs until a class in      is hit for the first time.

● The number of trials required to get this first hit gives us an accurate estimate of the 

total probability mass       for the entire zero-hit set.
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From Probability Profile to Secure Threshold
Once we have the accurate classification probabilities       for each target label     .

● Model the Guessing Attack: The number of matches      in     trials follows a Poisson 
Binomial Distribution.

● Calculate Success Probability: The probability of getting at least      matches out of 
candidates is

● Set the Threshold:
○ define a desired security level (e.g.,   -value <          ), which is max acceptable 

probability for a guessing attack to succeed.
○ find the minimum number of matches       needed to achieve this    -value.
○ obtain decision threshold:                       .
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Experimental Setup
● Datasets: CIFAR-10, CIFAR-100

● Models: ResNet-18, ResNet 28x10

● Baseline Schemes:

○ Adi et al. (abstract images)
○ Content-based (masked images)
○ Noise-based (Gaussian noise)
○ Unrelated-images

● Attacks Evaluated (17 total):

○ Watermark Ambiguity Attack

○ 16 Watermark Removal Attacks:

■ Input Preprocessing
■ Model Modification 
■ Model Extraction 
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Black-box watermarking schemes in evaluation.

Watermark removal attacks in our evaluation.



Results: Test Accuracy and Watermark Accuracy
● The impact of watermark 

embedding on model test 
accuracy is negligible, 
typically under 1%.

● After watermark removal 
or ambiguity attacks, the 
watermark accuracy 
decreases; however, the 
number of remaining valid 
watermarks is sufficient for 
ownership verification.
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Test and watermark (WM) accuracy before/after 
watermark embedding and after watermark attacks.



Results: Robustness Against Attacks
Key Finding:

● ChainMarks is the only scheme 
that successfully resists the 
Watermark Ambiguity Attack. 
All other baselines are vulnerable.

● Against the 16 removal attacks, 
ChainMarks demonstrates 
comparable or superior 
robustness to the state-of-the-art.
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Robustness of different watermarking schemes against 
17 attack types (threshold probability p=0.01)



Results: Higher Security & Marginal Utility
● Higher Security Guarantee

○ ChainMarks allows verification with much smaller    -values (e.g.,                  ). 
Other methods fail to compute a threshold at these high security levels.

● Higher Marginal Utility

○ ChainMarks provides a much greater increase in confidence for every percentage 
point of watermark accuracy retained after an attack.

14Required watermark accuracy             vs. threshold probability    , for different watermarking schemes.



Takeaways
We introduced ChainMarks, a new paradigm for DNN watermarking.

● Solves the Ambiguity Problem: The cryptographic chain makes it computationally infeasible for an 
attacker to forge a valid watermark, providing unambiguous ownership proof.

● Robust by Design: The use of out-of-distribution, noise-like triggers provides strong resilience 
against a wide range of watermark removal attacks.

● Quantifiable & High-Confidence Verification: Our two-phase Monte Carlo method allows for the 
calculation of precise decision thresholds, enabling ownership claims with extremely high statistical 
confidence (low p-values).

ChainMarks offers a practical, secure, and robust solution for protecting high-value intellectual 
property in deep learning models.
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Thank you!

Contact: shuvwang@gmail.com
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