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Motivation & Problem

e Value and Vulnerability of DNN Models.
o High Value IP: Developing DNNs is incredibly resource-intensive.
m massive data collection & curation.
m expensive, time-consuming training.
m significant competitive advantage.
o The Threat: Unauthorized use, resale, and model theft are major concerns.

o Existing Solution: Digital watermarking to prove ownership.



Background: Dynamic Watermarking

Dynamic watermarking is a common backdoor-based approach for IP protection.
e The owner creates a secret “trigger set” of inputs and target labels.
e The model is trained on both the original task data and this secret trigger set.
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Two Core Challenges

e Security Flaws: The Ambiguity Attack.
o Attackers can forge their own watermark onto a stolen model.
o They use optimization techniques (adversarial learning) to find a new set of triggers that
produce their desired labels.

o Ownership dispute: if two parties can “prove” ownership with two different watermarks, the

claims becomes impossible to resolve.

e Vague Verification: The Unprovable Claim.

o The criteria for verifying a watermark is often unclear and statistically weak.

o Itis hard to calculate the probability of a random match.

m  Models have highly skewed classification probabilities for random inputs
(many classes are never chosen).

o Existing methods cannot provide high-confidence proof (i.e., a very low p-value).



Our Solution: ChainMarks

e \We propose ChainMarks, a scheme that directly addresses these challenges.
e Key ldeas:
o Defeat Ambiguity with a Cryptographic Chain

B Trigger inputs are not independent but linked sequentially by a one-way hash function.
Trigger, = hash(Trigger, 1)

B The structure is computationally infeasible to forge using gradient-based optimization.
o Ensure Authenticity with a Digital Signature

B The target labels are derived directly from the owner's digital signature.
o Provide Rigorous Proof for Decision Threshold

B We introduce a two-phase Monte Carlo method to accurately calculate the decision

threshold, enabling high-confidence verification.



ChainMarks: Watermark Generation & Embedding

e Generate Trigger Chain
o Start with a secret key (K). Repeatedly apply a hash function [’ to create a chain of trigger
inputs Bz BL = F(K), Bi—l = F(BZ) .
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ChainMarks: Watermark Verification

e Regenerate Triggers

o  The verifier regenerates the trigger chain {B; }
with the secret Seed Key ( K).

e Query Model
o The triggers are fed into the suspect model to
to get predicted labels {c; } .
e Compare Signatures
o The Hamming distance d(S’, S) between the
predicted and original labels is calculated.
e Decision
o If the distance is above a threshold, ownership
is confirmed: d(S',5) <6- L.
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The Crux: How to Set the Decision Threshold 67

Threshold must be statistically robust to prevent attackers from matching it by pure chance.

Question: What is the probability that a random seed key and random signature would produce
m or more matches on a given model?

Difficulty: This probability depends on model's classification behavior for random, noise-like inputs.

Observation: This behavior is extremely skewed.

o For random inputs, some classes are predicted frequently, while others are never predicted.

Dataset Avg. | Min | Max | Prob. | # of classes
AMse Prob. | Prob. | Prob. | Stdev never hit
CIFAR-10 | 01 | 0 | 09962 | 0.2987 5 For a ResNet-18 on CIFAR-100,
CIFAR-100 | 0.01 0 | 09433 | 0.0399 49 49 out of 100 classes were never
Skewed probability distribution across different classes for DNN hit by 10 million random inputs.

models trained on CIFAR-10/CIFAR-100



Our Method: Two-Phase Monte Carlo Estimation

Standard estimation fails due to the zero-hit classes. Our two-phase approach solves this.

Phase 1: Initial Distribution & Zero-Hit Set
e Feed alarge number NN (e.g., 10 million) of random inputs into the model.
e Calculate initial probabilities P: for all classes z that were hit.

e Identify the set of classes U that had zero hits.

Phase 2: Estimate Probability of the Zero-Hit Set
e Feed more random inputs until a class in U is hit for the first time.
e The number of trials required to get this first hit gives us an accurate estimate of the

total probability mass Pu for the entire zero-hit set.



From Probability Profile to Secure Threshold

Once we have the accurate classification probabilities P, for each target label ¢; .

e Model the Guessing Attack: The number of matches M in L trials follows a Poisson
Binomial Distribution.

e Calculate Success Probability: The probability of getting at least m matches out of L
candidates is

P(M > m) ~ (I)(L+0.’5—,u) . (I)(L—O.5—u)

— o o'

e Set the Threshold:
o define a desired security level (e.g., p-value < 10~ ), which is max acceptable
probability for a guessing attack to succeed.
o find the minimum number of matches 1 needed to achieve this p-value.
o obtain decision threshold: 6 =1 — (m/L).
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Experimental Setup

e Datasets: CIFAR-10, CIFAR-100
e Models: ResNet-18, ResNet 28x10

e Baseline Schemes:

o Adi et al. (abstract images)

o Content-based (masked images)
o Noise-based (Gaussian noise)

o Unrelated-images

e Attacks Evaluated (17 total):
o  Watermark Ambiguity Attack

o 16 Watermark Removal Attacks:

m Input Preprocessing
m  Model Modification
m  Model Extraction

Black-box watermarking schemes in evaluation.

Scheme | Category ’ Verification ’ Capacity
ChainMarks | model dependent/independent | black-box multi-bit
Adi model dependent/independent | black-box multi-bit
Content model independent black-box zero-bit
Noise model independent black-box zero-bit
Unrelated model independent black-box zero-bit

Watermark removal attacks in our evaluation.

Attack ‘ Category | Param. Access | Data Access
Adaptive Denoising
JPEG Compression Input None
Input Quantization Preprocessing
Input Smoothing
Adversarial Training White-box
Fine-Tuning (RTLL, RTAL)
Weight Quantization Model Domain
Weight Pruning Modification
Regularization
Fine-Tuning (FTLL, FTAL) | Labeled Subset
Transfer Learning
Retraining Model .
Cross-Architecture Retraining Extraction Blaek-box Pomaiy
Adversarial Training (From Scratch)
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Results: Test Accuracy and Watermark Accuracy

The impact of watermark
embedding on model test
accuracy is negligible,
typically under 1%.

After watermark removal
or ambiguity attacks, the
watermark accuracy
decreases; however, the
number of remaining valid
watermarks is sufficient for
ownership verification.

|

Accuracies (CIFAR-10/CIFAR-100)

Accuracy
‘ ChainMarks | Adi ‘ Content | Noise ‘ Unrelated
e I_0_92; (;6;1-' 0.921/0.692 | 0.915/0.684 | 0.913/0.685 | 0.914/0.682
w/o WM embedding | 1 ™ /0. s : . . . ; 4 X
1 1
Jectacamacy ; 0.915/0.683 : 0.916/0.685 | 0.91/0.681 0.911/0.678 | 0.909/0.676
w/ WM embedding | ! 777000 1 . . . - y 5 :
Tebt Accutacy 0.78/0.68 0.77/0.69 0.56/0.52 0.81/0.73 0.53/0.51
after Attack .78/0. .77/0. .56/0. .81/0. .53/0.
WM Accuracy ' _I — .
after Embedding | 1.0/1.0 | 1.0/1. 1.0/1.0 1.0/1.0 1.0/1.0
! |
iy o ! 0.67/0.34 : 0.69/0.3 0.58/0.33 0.73/0.4 0.64/0.35
after Attack | 0.67/034 ;| 069/037 | 0.58/0. 73/0.41 | 0.64/0.

Test and watermark (WM) accuracy before/after

watermark embedding and after watermark attacks.
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Results: Robustness Against Attacks

Key Finding:

ChainMarks is the only scheme
that successfully resists the
Watermark Ambiguity Attack.

All other baselines are vulnerable.

Against the 16 removal attacks,
ChainMarks demonstrates
comparable or superior
robustness to the state-of-the-art.

‘ Robust (-) or Vulnerable (V) for CIFAR-10 / CIFAR-100

Attack Types
’ ChainMarks‘ Adi ’ Content ’ Noise Unrelated

WM Ambiguity Attack -/- \2A% \2A% \24% \24%
Adaptive Denoising -/- -/~ -/- -/- -/-
JPEG Compression -/- -/- -/- -/- -/-
Input Quantization -/- -/- -/- -/- -/-
Input Smoothing -/- -/- -/- -/- ==
Adversarial Training -/- -/- -/- -/- =~
Fine-Tuning (RTAL) -/- = == -/- -/-
Fine-Tuning (RTLL) -/- -f- -/~ -/- -/-

Fine-Tuning (FTAL) -/- -/- \24% -/- \24%
Fine-Tuning (FTLL) -/- -/- -/- -/- -/-
Weight Quantization -/- -/- -/- -/- -/-
Weight Pruning -/- -/- -/- -/- -/-
Regularization -/- V/- V/- -/- V/-

Retraining -/- -/- \24% V/- \24%

Transfer Learning A% \24% \24% 4% \24%
=t - + V- - V-
Adversarial Training -/~ -/- -/- -/- -/-

Robustness of different watermarking schemes against

17 attack types (threshold probability p=0.01)
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Results: Higher Security & Marginal Utility

e Higher Security Guarantee

o ChainMarks allows verification with much smaller p-values (e.g., 5 x 10719).
Other methods fail to compute a threshold at these high security levels.

e Higher Marginal Utility

o ChainMarks provides a much greater increase in confidence for every percentage
point of watermark accuracy retained after an attack.

oo

(=]

(e}
T

| == ChainMarks
Adi
| ¥ Content
£ Noise
4 Unrelated

(o)

o

(o)}
T

=+ ChainMarks

Required WM Accuracy (%)
£

Required WM Accuracy (%)
N

Adi

L | ¥ Content |

20 2 B Noise *\*

4 Unrelated

O 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 Il 1 1

5eV02e9 geB gel geb ge5 gt g o) 500569 5ed gl e ged gek ged o)
Threshold Probability (p-value) Threshold Probability (p-value)
(a) models on CIFAR-10. (b) models on CIFAR-100.

Required watermark accuracy (1 — 6) vs. threshold probability P, for different watermarking schemes.



Takeaways

We introduced ChainMarks, a new paradigm for DNN watermarking.

e Solves the Ambiguity Problem: The cryptographic chain makes it computationally infeasible for an
attacker to forge a valid watermark, providing unambiguous ownership proof.

e Robust by Design: The use of out-of-distribution, noise-like triggers provides strong resilience
against a wide range of watermark removal attacks.

e Quantifiable & High-Confidence Verification: Our two-phase Monte Carlo method allows for the
calculation of precise decision thresholds, enabling ownership claims with extremely high statistical
confidence (low p-values).

ChainMarks offers a practical, secure, and robust solution for protecting high-value intellectual
property in deep learning models.
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