

# ChainMarks: Securing DNN Watermark with Cryptographic Chain

Brian Choi, Shu Wang, Isabelle Choi, Kun Sun









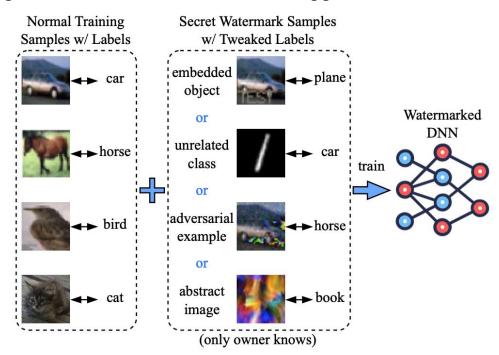
### Motivation & Problem

- Value and Vulnerability of DNN Models.
  - High Value IP: Developing DNNs is incredibly resource-intensive.
    - massive data collection & curation.
    - expensive, time-consuming training.
    - significant competitive advantage.
  - The Threat: Unauthorized use, resale, and model theft are major concerns.
  - Existing Solution: Digital watermarking to prove ownership.

### Background: Dynamic Watermarking

Dynamic watermarking is a common backdoor-based approach for IP protection.

- The owner creates a secret "trigger set" of inputs and target labels.
- The model is trained on both the original task data and this secret trigger set.
- The final model <u>behaves normally</u>
   on <u>standard inputs</u> but <u>produces</u>
   the <u>owner's secret labels when</u>
   given the trigger inputs.



# Two Core Challenges

- Security Flaws: The Ambiguity Attack.
  - Attackers can forge their own watermark onto a stolen model.
  - They use optimization techniques (adversarial learning) to find a new set of triggers that produce their desired labels.
  - Ownership dispute: if two parties can "prove" ownership with two different watermarks, the claims becomes impossible to resolve.
- Vague Verification: The Unprovable Claim.
  - The criteria for verifying a watermark is often unclear and statistically weak.
  - It is hard to calculate the probability of a random match.
    - Models have highly skewed classification probabilities for random inputs (many classes are never chosen).
  - Existing methods cannot provide high-confidence proof (i.e., a very low p-value).

### Our Solution: ChainMarks

- We propose ChainMarks, a scheme that directly addresses these challenges.
- Key Ideas:
  - Defeat Ambiguity with a Cryptographic Chain
    - Trigger inputs are not independent but linked sequentially by a one-way hash function.

$$Trigger_n = hash(Trigger_{n+1})$$

- The structure is computationally infeasible to forge using gradient-based optimization.
- Ensure Authenticity with a Digital Signature
  - The target labels are derived directly from the owner's digital signature.
- Provide Rigorous Proof for Decision Threshold
  - We introduce a two-phase Monte Carlo method to accurately calculate the decision threshold, enabling high-confidence verification.

# ChainMarks: Watermark Generation & Embedding

#### Generate Trigger Chain

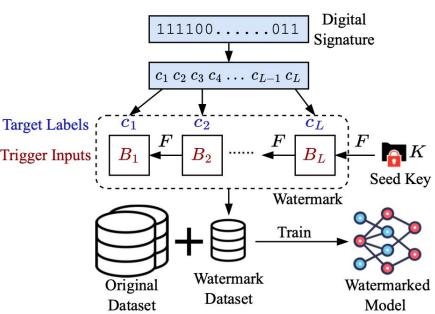
Start with a secret key (K). Repeatedly apply a hash function F to create a chain of trigger inputs  $B_i$ :  $B_L = F(K), B_{i-1} = F(B_i)$ .

### Generate Target Labels

- Convert the owner's Digital Signature (S)
   into a base-C number (C is #classes).
- $\circ$  The digits  $\{c_i\}$  become the target labels. Trigger Inputs  $\{c_i\}$

#### Embed Watermark

 $\circ$  Train the DNN on the original dataset combined with the watermark dataset  $\{(B_1,c_1),(B_2,c_2),\dots\}$ 



### ChainMarks: Watermark Verification

#### Regenerate Triggers

o The verifier regenerates the trigger chain  $\{B_i\}$  with the secret Seed Key ( K ).

#### Query Model

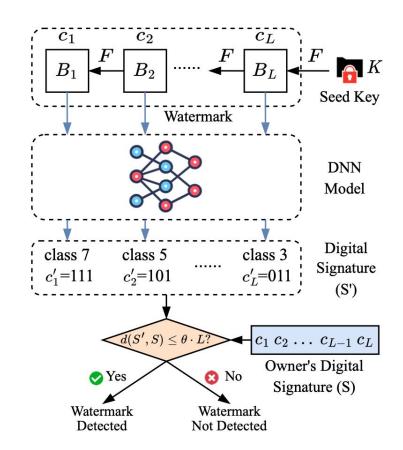
• The triggers are fed into the suspect model to to get predicted labels  $\{c_i'\}$ .

### Compare Signatures

 $\circ$  The Hamming distance d(S',S) between the predicted and original labels is calculated.

#### Decision

o If the distance is above a threshold, ownership is confirmed:  $d(S',S) \leq \theta \cdot L$ .



### The Crux: How to Set the Decision Threshold $\theta$ ?

Threshold must be statistically robust to prevent attackers from matching it by pure chance.

- Question: What is the probability that *a random seed key and random signature* would produce *m or more* matches on a given model?
- **Difficulty:** This probability depends on *model's classification behavior* for random, noise-like inputs.
- Observation: This behavior is extremely skewed.
  - For random inputs, some classes are predicted frequently, while others are never predicted.

| Dataset   | Avg.<br>Prob. | Min<br>Prob. | Max<br>Prob. | Prob.<br>Stdev | # of classes<br>never hit |
|-----------|---------------|--------------|--------------|----------------|---------------------------|
| CIFAR-10  | 0.1           | 0            | 0.9962       | 0.2987         | 5                         |
| CIFAR-100 | 0.01          | 0            | 0.9433       | 0.0399         | 49 —                      |

Skewed probability distribution across different classes for DNN models trained on CIFAR-10/CIFAR-100

For a ResNet-18 on CIFAR-100, 49 out of 100 classes were **never** hit by 10 million random inputs.

### Our Method: Two-Phase Monte Carlo Estimation

Standard estimation fails due to the zero-hit classes. Our two-phase approach solves this.

#### Phase 1: Initial Distribution & Zero-Hit Set

- Feed a large number N (e.g., 10 million) of random inputs into the model.
- Calculate initial probabilities  $p_i$  for all classes i that were hit.
- Identify the set of classes U that had zero hits.

#### Phase 2: Estimate Probability of the Zero-Hit Set

- Feed more random inputs until a class in U is hit for the first time.
- The number of trials required to get this first hit gives us an accurate estimate of the total probability mass  $p_U$  for the entire zero-hit set.

### From Probability Profile to Secure Threshold

Once we have the accurate classification probabilities  $P_{c_i}$  for each target label  $c_i$  .

- Model the Guessing Attack: The number of matches M in L trials follows a Poisson Binomial Distribution.
- ullet Calculate Success Probability: The probability of getting at least m matches out of L candidates is

$$P(M \geq m) pprox \Phi(rac{L+0.5-\mu}{\sigma'}) - \Phi(rac{L-0.5-\mu}{\sigma'})$$

#### Set the Threshold:

- o define a desired security level (e.g., p-value <  $10^{-7}$ ), which is max acceptable probability for a guessing attack to succeed.
- $\circ$  find the minimum number of matches m needed to achieve this p-value.
- o obtain decision threshold:  $\theta = 1 (m/L)$ .

# **Experimental Setup**

- **Datasets**: CIFAR-10, CIFAR-100
- Models: ResNet-18, ResNet 28x10
- Baseline Schemes:
  - Adi et al. (abstract images)
  - Content-based (masked images)
  - Noise-based (Gaussian noise)
  - Unrelated-images
- Attacks Evaluated (17 total):
  - Watermark Ambiguity Attack
  - 16 Watermark Removal Attacks:
    - Input Preprocessing
    - Model Modification
    - Model Extraction

#### Black-box watermarking schemes in evaluation.

| Scheme     | Category                    | Verification | Capacity  |
|------------|-----------------------------|--------------|-----------|
| ChainMarks | model dependent/independent | black-box    | multi-bit |
| Adi        | model dependent/independent | black-box    | multi-bit |
| Content    | model independent           | black-box    | zero-bit  |
| Noise      | model independent           | black-box    | zero-bit  |
| Unrelated  | model independent           | black-box    | zero-bit  |

#### Watermark removal attacks in our evaluation.

| Attack                                                                                                                   | Category               | Param. Access | Data Access            |
|--------------------------------------------------------------------------------------------------------------------------|------------------------|---------------|------------------------|
| Adaptive Denoising JPEG Compression Input Quantization Input Smoothing                                                   | Input<br>Preprocessing |               | None                   |
| Adversarial Training Fine-Tuning (RTLL, RTAL) Weight Quantization Weight Pruning Regularization Fine-Tuning (FTLL, FTAL) | Model<br>Modification  | White-box     | Domain  Labeled Subset |
| Transfer Learning Retraining Cross-Architecture Retraining Adversarial Training (From Scratch)                           | Model<br>Extraction    | Black-box     | Domain                 |

# Results: Test Accuracy and Watermark Accuracy

- The impact of watermark embedding on model test accuracy is negligible, typically under 1%.
- After watermark removal or ambiguity attacks, the watermark accuracy decreases; however, the number of remaining valid watermarks is sufficient for ownership verification.

| Accuracy                          | Accuracies (CIFAR-10/CIFAR-100) |             |             |             |             |  |
|-----------------------------------|---------------------------------|-------------|-------------|-------------|-------------|--|
| Tiecurucy                         | ChainMarks                      | Adi         | Content     | Noise       | Unrelated   |  |
| Test Accuracy<br>w/o WM embedding | 0.923/0.691                     | 0.921/0.692 | 0.915/0.684 | 0.913/0.685 | 0.914/0.682 |  |
| Test Accuracy<br>w/ WM embedding  | 0.915/0.683                     | 0.916/0.685 | 0.91/0.681  | 0.911/0.678 | 0.909/0.676 |  |
| Test Accuracy<br>after Attack     | 0.78/0.68                       | 0.77/0.69   | 0.56/0.52   | 0.81/0.73   | 0.53/0.51   |  |
| WM Accuracy<br>after Embedding    | 1.0/1.0                         | 1.0/1.0     | 1.0/1.0     | 1.0/1.0     | 1.0/1.0     |  |
| WM Accuracy<br>after Attack       | 0.67/0.34                       | 0.69/0.37   | 0.58/0.33   | 0.73/0.41   | 0.64/0.35   |  |

Test and watermark (WM) accuracy before/after watermark embedding and after watermark attacks.

# Results: Robustness Against Attacks

### **Key Finding:**

- ChainMarks is the only scheme that successfully resists the Watermark Ambiguity Attack.
   All other baselines are vulnerable.
- Against the 16 removal attacks, ChainMarks demonstrates comparable or superior robustness to the state-of-the-art.

| Attack Types                     | Robust (-) or Vulnerable (V) for CIFAR-10 / CIFAR-100 |     |         |       |           |  |
|----------------------------------|-------------------------------------------------------|-----|---------|-------|-----------|--|
| rituek Types                     | ChainMarks                                            | Adi | Content | Noise | Unrelated |  |
| WM Ambiguity Attack              | -/-                                                   | V/V | V/V     | V/V   | V/V       |  |
| Adaptive Denoising               | -/-                                                   | -/- | -/-     | -/-   | -/-       |  |
| JPEG Compression                 | -/-                                                   | -/- | -/-     | -/-   | -/-       |  |
| Input Quantization               | -/-                                                   | -/- | -/-     | -/-   | -/-       |  |
| Input Smoothing                  | -/-                                                   | -/- | -/-     | -/-   | -/-       |  |
| Adversarial Training             | -/-                                                   | -/- | -/-     | -/-   | -/-       |  |
| Fine-Tuning (RTAL)               | -/-                                                   | -/- | -/-     | -/-   | -/-       |  |
| Fine-Tuning (RTLL)               | -/-                                                   | -/- | -/-     | -/-   | -/-       |  |
| Fine-Tuning (FTAL)               | -/-                                                   | -/- | V/V     | -/-   | V/V       |  |
| Fine-Tuning (FTLL)               | -/-                                                   | -/- | -/-     | -/-   | -/-       |  |
| Weight Quantization              | -/-                                                   | -/- | -/-     | -/-   | -/-       |  |
| Weight Pruning                   | -/-                                                   | -/- | -/-     | -/-   | -/-       |  |
| Regularization                   | -/-                                                   | V/- | V/-     | -/-   | V/-       |  |
| Retraining                       | -/-                                                   | -/- | V/V     | V/-   | V/V       |  |
| Transfer Learning                | V/V                                                   | V/V | V/V     | V/V   | V/V       |  |
| Cross-Architecture<br>Retraining | -/-                                                   | -/- | V/-     | -/-   | V/-       |  |
| Adversarial Training             | -/-                                                   | -/- | -/-     | -/-   | -/-       |  |

Robustness of different watermarking schemes against 17 attack types (threshold probability p=0.01)

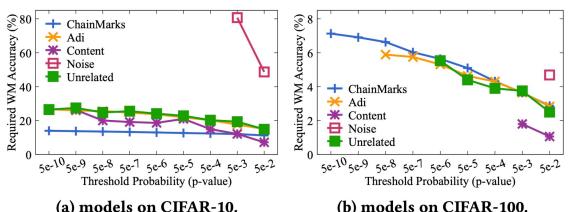
# Results: Higher Security & Marginal Utility

#### **Higher Security Guarantee**

ChainMarks allows verification with much smaller p-values (e.g.,  $5 \times 10^{-10}$  ). Other methods fail to compute a threshold at these high security levels.

#### **Higher Marginal Utility**

ChainMarks provides a much greater increase in confidence for every percentage point of watermark accuracy retained after an attack.



Required watermark accuracy  $(1-\theta)$  vs. threshold probability  $\mathcal{D}$ , for different watermarking schemes.

### **Takeaways**

We introduced **ChainMarks**, a new paradigm for DNN watermarking.

- Solves the Ambiguity Problem: The cryptographic chain makes it computationally infeasible for an attacker to forge a valid watermark, providing unambiguous ownership proof.
- Robust by Design: The use of out-of-distribution, noise-like triggers provides strong resilience
  against a wide range of watermark removal attacks.
- Quantifiable & High-Confidence Verification: Our two-phase Monte Carlo method allows for the calculation of precise decision thresholds, enabling ownership claims with extremely high statistical confidence (low p-values).

ChainMarks offers a practical, secure, and robust solution for protecting high-value intellectual property in deep learning models.

### Thank you!

Contact: shuvwang@gmail.com

### ChainMarks: Securing DNN Watermark with Cryptographic Chain

Brian Choi<sup>1</sup>, Shu Wang<sup>2</sup>, Isabelle Choi<sup>3</sup>, Kun Sun<sup>4</sup>

<sup>1</sup>Johns Hopkins University <sup>2</sup>Palo Alto Networks, Inc. <sup>3</sup>UCLA <sup>4</sup>George Mason University







