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ABSTRACT
A timely software update is vital to combat the increasing security
vulnerabilities. However, some software vendors may secretly patch
their vulnerabilities without creating CVE entries or even describing
the security issue in their change log. Thus, it is critical to identify
these hidden security patches and defeat potential N-day attacks.
Researchers have employed various machine learning techniques
to identify security patches in open-source software, leveraging the
syntax and semantic features of the software changes and commit
messages. However, all these solutions cannot be directly applied
to the binary code, whose instructions and program flow may dra-
matically vary due to different compilation configurations. In this
paper, we propose BinGo, a new security patch detection system
for binary code. The main idea is to present the binary code as
code property graphs to enable a comprehensive understanding of
program flow and perform a language model over each basic block
of binary code to catch the instruction semantics. BinGo consists of
four phases, namely, patch data pre-processing, graph extraction,
embedding generation, and graph representation learning. Due to
the lack of an existing binary security patch dataset, we construct
such a dataset by compiling the pre-patch and post-patch source
code of the Linux kernel. Our experimental results show BinGo
can achieve up to 80.77% accuracy in identifying security patches
between two neighboring versions of binary code. Moreover, BinGo
can effectively reduce the false positives and false negatives caused
by the different compilers and optimization levels.
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1 INTRODUCTION
Software patching is a common practice in software maintenance
to ensure the stability, performance, and security of software. Thus,
software developers periodically release patch packages to add new
features, address performance bugs, and fix security vulnerabilities.
Among them, security patches should be prioritized to address
software vulnerabilities and thus prevent N-day threats coming
from adversaries. However, timely deployment of security patches
remains a challenge since not all security patches are explicitly
marked [56]. For example, software vendors may secretly patch
their vulnerabilities without creating CVE entries or even describing
the security issue in its change log [45]. Therefore, identifying these
hidden security patches becomes critical for developers and users
to improve their software security.

Researchers have leveraged various syntax and semantic features
to help identify security patches, such as the software changes
as well as their metadata [13, 26, 39, 43, 47–49, 51, 57]. However,
those solutions require the availability of source code commits that
include source code diffs and commit messages, and unfortunately,
not all patches are explicitly released with accessible source code.
Particularly, commercial closed-source software vendors usually
only release a new version of the binary file to replace the old
version, presenting challenges in demystifying patch details.
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The existing security patch detection methods on source code
cannot be directly applied to the binary code due to the limitation of
representing the binary code as either a sequential model or a graph
model. The sequential-based solution [51] treats the changed traces
(i.e., a sequence of basic blocks or instructions) as the patch pattern.
Alternatively, graph-based solutions try to catch the control flow
and data dependency by representing source code as code property
graphs [6, 18, 25, 43, 49]. However, the analysis of binary code is
more complex than that of source code, since both the instruction
sequence and the program flow in binary code may dramatically
vary due to different compilation configurations (e.g., compiler
versions and optimization levels) used in compiling the source
code [16]. The sequential-based solutions can hardly accommodate
the program flow changes due to the branch and loop statements
(which are usually associated with software vulnerabilities [48])
in identifying binary security patches. Though recent studies [6,
43, 49] incorporate graph models to represent program flow, since
only statistical features of statements are embedded in each node,
they miss subtle code changes in security patches and trigger more
false negatives.

In this paper, we propose BinGo, an end-to-end security patch de-
tection system over binary code. Themain idea is to present the code
as code property graphs to enable a comprehensive understand-
ing of program flow and perform a Language Model (LM)-based
model over each basic block to catch the instruction semantics.
BinGo consists of four phases, namely, patch data pre-processing,
graph extraction, embedding generation, and graph representation
learning.

BinGo first identifies and extracts patch-related code segments
from a pair of pre-patch and post-patch binaries. Different from the
source code analysis that regards code statements as process units,
our binary code analysis treats basic blocks of assembly code as
process units, which consist of a sequence of contiguous straight-
line instructions without branches. Basic blocks are capable of
better preserving the inherent code logic than individual assembly
instructions, which only perform low-level simple operations, i.e.,
moving registers. Because we focus on analyzing the code changes
between pre-patch and post-patch binaries, it is critical to identify
the patch-related basic blocks to reduce the analysis scope. We
modify the workflow of DeepBinDiff [12] to detect patch-related
basic blocks with a low false positive rate.

Next, we transform the assembly code into a graph representa-
tion to contain rich syntax and semantic information. We use the
code property graph (CPG) that accommodates the control flow
graph (CFG), control dependency graph (CDG), and data depen-
dency graph (DDG) in a unified graph. To reduce the graph size, we
implement a graph slicing method to selectively remove context
basic blocks that are too distant from the patch-related basic blocks
in the control relations. In this step, we generate two code prop-
erty graphs for pre-patch and post-patch binaries, respectively. The
graph topology can be represented as an adjacent matrix, while the
edge attributes can be embedded according to three relationships,
i.e., CFG, CDG, and DDG. To fully embed the syntax and semantics
in each node (i.e., basic block), we utilize an LM-based model to
directly learn an embedding from the assembly instructions. Based
on the language models, e.g., BERT [10], GPT [36], and BART [22],

we can capture the real semantic, even if instructions in the node
have been changed by compilation [14, 24, 26].

Finally, we develop a graph learning model to identify security
patches. It is based on the siamese network architecture [29], which
uses the same weights over both pre-patch and post-patch graphs
to obtain a comparable output. Each branch of the model comprises
three graph convolution layers to achieve a detailed understand-
ing of the input graph representation. Since the graphs contain
three different types of edges for CFG, CDG, and DDG, we propose
a multi-head attention convolution mechanism that views each
edge type as an individual convolution channel and aggregates the
information of all channels to the next layer.

We implement a prototype of BinGo with 2,247 LoC in Python.
Due to the absence of a binary security patch dataset, we first
construct a benchmark by compiling the pre-patch and post-patch
source code in the Linux kernel. This dataset can be further used in
vulnerability detection, patch presence, and hot patch generation.
Our experimental results show BinGo can achieve up to 80.8%
accuracy with an F1 score of 0.76. Besides, BinGo can achieve a
false negative ratio of 29.15% and a false positive ratio of 11.82%. We
further demonstrate BinGo is effective under different compilation
configurations, i.e., compilers and optimization levels, suggesting
BinGo is a viable approach to alleviate the potential false positives
caused by compilation factors.

In summary, we make the following contributions:
• We develop a new binary security patch detection system
named BinGo, which can help users identify potential hidden
security patches in newly released binary code and thus
prioritize the related system update.

• We propose a new graph representation for binary code to
integrate both the CPG-based static analysis features and the
LM-based embedding features, providing a comprehensive
representation of subtle code changes in binary code.

• We develop a graph learning-based detection model that
adopts a siamese network to identify security patches by
comparing the pre-patch and post-patch binaries.

• We implement a prototype of BinGo and evaluate its perfor-
mance on our benchmark dataset. The experimental results
show BinGo can achieve high accuracy as well as low false
positives/negatives on identifying security patches between
two neighboring versions of binary code.

2 PRELIMINARY
2.1 Problem Statement
Given two binary versions, we denote the pre-patch version as
𝑏𝑖𝑛𝑎 and the post-patch version as 𝑏𝑖𝑛𝑏 . Compared to 𝑏𝑖𝑛𝑎 , some
basic blocks in 𝑏𝑖𝑛𝑏 have been modified, e.g., adding, deleting, or
editing instructions, which can be used to fix vulnerabilities, address
performance bugs, or add new functionalities. We categorize all
code changes into two patch types, either the security patch denoted
as 𝑝𝑠 or the non-security patch denoted as 𝑝𝑛𝑠 . In this paper, our
task is to develop a classification system 𝑓𝑐 to check whether a
given patch 𝑝 is a security patch or a non-security one, as described
in Formula (1).

𝑓𝑐 (𝑝𝑖 ) = {𝑝𝑠 |𝑝𝑛𝑠 },𝑤 .𝑟 .𝑡{𝑝0, 𝑝1, . . . , 𝑝𝑛} ∈ 𝑑𝑖 𝑓𝑓 (𝑏𝑖𝑛𝑎, 𝑏𝑖𝑛𝑏 ) (1)
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mov eax, dword ptr[rsp+0xc4]
mov dword ptr[rsp+0x10c],eax
jmp 0x410af2

mov eax, dword ptr[rsp+0xc4]
cmp eax, 0
jge 0x41054a

xor edi, edi
mov esi, eax
mov dword ptr[rsp+0xc4], eax
call 0x500010

mov rdi, rbx
call 0x5000d0

mov r13d, eax
test eax, eax
jns 0x4027c7

call 0x500008 mov rdi,qword ptr[rsp+0x118]
call 0x5000f8

mov eax, dword ptr[rsp+0xc4]
cmp eax, 0
jge 0x410557

xor edi, edi
mov esi, eax
mov dword ptr[rsp+0xc4], eax
call 0x500010

mov r13d, eax
test eax, eax
js 0x402d5d

01 diff --git a/ipmi_msghandler.c 
              b/ipmi_msghandler.c
02 index 2bac299db2015..cad9563f8f485 100644
03 --- a/ipmi_msghandler.c
04 +++ b/ipmi_msghandler.c
05 @@ -3020,8 +3020,11 @@ static int __ipmi_bmc_register(
06   bmc->pdev.name = "ipmi_bmc";
07 
08   rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
09 - if (rv < 0)
10 + if (rv < 0) {
11 + kfree(bmc);
12   goto out;
13 + }
14 +
15   bmc->pdev.dev.driver = &ipmidriver.driver;
16   bmc->pdev.id = rv;
17   bmc->pdev.dev.release = release_bmc_device;

Patch in Source Code

Pre-Patch Post-PatchCompilation

GCC w/ O2 

Clang w/ O1

CFG in Assembly Code

call 0x500008

call 0x500008

call 0x500008

Figure 1: A patch in source code and its corresponding assembly code with various compilation configurations (CVE-2019-19046).

To simplify the security patch identification process, we have
two assumptions: (1) There is only one patch between𝑏𝑖𝑛𝑎 and𝑏𝑖𝑛𝑏 ,
which indicates that all modified basic blocks in 𝑑𝑖 𝑓𝑓 (𝑏𝑖𝑛𝑎, 𝑏𝑖𝑛𝑏 )
are from the same patch; (2) A security patch only focuses on fixing
one vulnerability, which implies that all patch-related basic blocks
are connected together via data dependency or control dependency
to resolve the vulnerability. We performed a preliminary study on
1,136 patches from the Linux kernel, among which 801 patches are
security fixes. There are 661 patches among them only modified
one file, and 469 patches only changed one function. Therefore, we
believe that our assumption can cover most scenarios in practice.

2.2 Challenges of Security Patch Detection in
Binary Code

Most open-source programs are maintained using Git in practice,
which records the code changes before and after the patches [23],
as shown in the source code part of Figure 1. Existing work [48]
has shown that patches of different purposes can be distinguished
based on the corresponding changes in control flow and data flow.
For example, Wang et al. found that about 70% of security patches
consist of if-then-else structures [46], which aim to add or modify
the if conditions for security check addition or branch statement
modification. However, for non-security patches, the common prac-
tice is to add or replace entire procedures (or even functions) to
remove redundant code or add new features. In addition, the code
size involved in security patches is usually much smaller than that
of non-security patches. All these uncovered characteristics are
very helpful to identify security patches and non-security patches
at the source code level. Existing works [43, 57] have achieved good
recognition performance by conducting multiple graph features
and using graph learning algorithms.

However, for binary code, the compiler may introduce extra
noise that increases the difficulty of security patch detection. Due
to diverse compiler implementations (e.g., GCC [15] and Clang [8])
and optimization mechanisms (e.g., O0, O1, O2, O3, and Os), different
binary code variants may be compiled from the same source code,
although they execute exactly identical semantics [4, 16]. As shown
in Figure 1, we take the patch of CVE-2019-10496 as an example to
demonstrate such a difference. We compiled the Linux kernel for
pre-patch and post-patch versions with two compilation configura-
tions (i.e., Clang with O1 and GCC with O2). We retain the sliced

CFG in assembly code, only including the basic blocks of code mod-
ification (i.e., the red and green ones) and necessary context. The
source code shows that the patch merely adds a memory-releasing
statement (i.e., kfree(bmc)) in the security check, but such a code
change can involve multiple basic blocks in the assembly code. Fur-
thermore, we observe that the CFGs derived from Clang and GCC
have different instructions, basic blocks, and control dependencies.

With different compilation configurations, the mapping from
source code to binary code would be different. Compiled by GCC
with O2, the source code statement "+ kfree(bmc)" can result in a
new basic block and a changed CFG structure in the binary code.
However, compiled by Clang with O1, the changes only focus on
the instructions and there is no effect on basic blocks and CFG
structure. Therefore, when detecting security patches in binary
code, we also need to consider the additional issues caused by
compilation configurations. In this paper, BinGo constructs new
semantic patterns by fusing assembly instruction embeddings and
CPG-based graph representation to incorporate the changes on both
code instructions and program flow in the binary patches. Moreover,
we also build a binary patch dataset based on multiple compilation
configurations to evaluate the effectiveness of the BinGo and its
robustness to the compilation.

3 SYSTEM DESIGN
BinGo is an end-to-end deep learning model that detects security
patches from non-security ones in binary code. Figure 2 shows
the overview of BinGo, which consists of four phases: patch data
pre-processing, graph extraction, embedding generation, and graph
representation learning. First, BinGo extracts patch-related code
snippets from pre-patch and post-patch binaries. Second, BinGo
conducts the graph representation by connecting patch-related
blocks according to their control flow and data flow dependencies.
Third, BinGo converts attributes of nodes and edges in the graph
into the numeric embedding representations. Finally, we feed the
embeddings into the graph learning model to classify the security
patches and the non-security patches.

3.1 Patch Data Pre-Processing
Given a pair of pre-patch and post-patch binary programs, the first
phase is to extract the patch-related code segments. Considering
the complex semantic mapping from source code to assembly code
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Phase I: Patch Preprocessing Phase II: Graph Extraction Phase III: Embedding Phase IV: Graph Learning

[0.35, 0.12, ...]

[0.23, 0.56, ...]

[-0.04, 0.21, ...]

[-0.04, 0.21, ...]

[...]
[...]

[...]
[...]

[0.35, 0.12, ...]

[0.23, 0.56, ...]

[-0.04, 0.21, ...]

[1,0,0]
[...]

[...]
 cmp   edx, 302h
 mov   edx, 20080h
 pop    ebb
 retn

 cmp   ecx, 3 
 jz       loc_6412

 mov   edx, [eax]
 jmp    0804894c

 cmp   edx, 302h
 mov   edx, 20080h
 pop    ebb
 retn

 pop ebb
 retn

 cmp   ecx, 3 
 jz       loc_6412

 cmp   edx, 302h
 jle      loc_640f
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Figure 2: The overview of the BinGo system that contains four phases.

during the compilation, modifying one statement in the source
code may correspond to one or even multiple basic blocks in the
assembly code. For instance, the statement "c = (a < b) ? a :
b;" can be split into 3 basic blocks. Thus, a binary patch can be
represented by a set of basic blocks, rather than a single instruction
or function.

Formally, we can define the basic block set in pre-patch binary
as 𝐵𝐵𝑝𝑟𝑒 = {𝑏𝑏𝑎0 , 𝑏𝑏𝑎1 , . . . , 𝑏𝑏𝑎𝑛 }, where 𝑏𝑏𝑎𝑖 represents a basic
block containing instructions related to the patch. To compare the
differences before and after the patch, we also define 𝐵𝐵𝑝𝑜𝑠𝑡 =

{𝑏𝑏𝑏0 , 𝑏𝑏𝑏1 , . . . , 𝑏𝑏𝑏𝑚 }, which represents all corresponding basic
blocks in post-patch binary.

A patch-related block refers to the basic block in which there
is at least one changed (i.e., add, delete, or modify) instruction.
Intuitively, we can detect such blocks by diffing the pre-patch and
post-patch disassembled programs. In practice, we unexpectedly
found some rule-based diff tools (e.g., BinDiff in IDA) have high
false positives in detecting patch-related blocks [12]. We infer there
are two reasons for this issue: (1) Basic block changes caused by
compilation: the recompilation ofmodified source codewill not only
affect the direct-related blocks but also change the neighborhood
blocks, especially compiled with a higher optimization level. (2)
The basic blocks of pre-patch and post-patch programs are not
in one-to-one correspondence: the modification of a source code
statement may correspond to one or even multiple basic blocks.
For arbitrary binaries.With the comparison between the existing
diff tools, we choose DeepBinDiff [12] to extract the patch-related
blocks. The original DeepBinDiff directly detects basic blocks with
distinct semantics bymatching inter-procedural control-flow graphs
(ICFG) in the program-wide code representation, which is precise
but leads to high overhead. Thus, we modify the workflow of Deep-
BinDiff to reduce the false positive rate and improve computation
efficiency. As shown in Figure 4(a), our modified DeepBindiff first

narrows down the search scope to the function level and then fil-
ters discrepant basic blocks within patch-related functions. Such
an approach works for arbitrary binaries, even for striped binaries,
which do not include symbol table information.
For images with the symbol table.Our BinGo can also be used to
identify security patches within released images. For pre-patch and
post-patch images, the workflow of patch-related block extraction is
shown in Figure 4(b). As the symbol table is included in most Linux-
based kernel images [54], we can easily locate the functions by
checking the entities with the same name. Then, we perform syntax-
based function similarity detection method to filter the identical
functions. Finally, we utilize the modified DeepBinDiff to extract
patch-related blocks within functions.
For the ground truth in the Benchmark. We leverage the infor-
mation of source code changes in commit messages and the debug
information within binaries to locate patch-related blocks precisely.
Specifically, we build a mapping between instruction and source
code line number by using the DWARF information [38]. Then, we
could precisely locate each patch-related block according to the
source code changes.

3.2 Graph Extraction
In addition to patch-related block sets, the impact of patches on
program semantics is also reflected in the changes in program flow
and dependency. In other words, a patch also contains the rela-
tionship information between basic blocks. Code property graph
(CPG) is a language-agnostic intermediate program representa-
tion, which merges multiple code graph representations into one
queryable graph database [53]. To include all possible relations,
our CPG-based representation merges three types of graphs (i.e.,
control flow graph (CFG), control dependence graph (CDG), and
data dependency graph (DDG)) into a single joint data structure. As
shown in Figure 3, CFG represents all the possible traversed paths
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Control Flow Graph
(CFG)

Control Dependence Graph
(CDG)

Data Dependence Graph
(DDG)

Forward Dominance Tree
(FDT)

Code Property
Graph (CPG)

Figure 3: The code property graph (CPG) generation from
the CFG, CDG, and DDG.

during program execution, and DDG represents the data access
relation between statements. Noting that CDG is derived from CFG
via inferring the forward dominance tree (FDT), which means that
node B dominates node A if node A determines whether node B is
executed. In our paper, CFG contains the direct dominance relation-
ship, while CDG focuses on the indirect dominance relationships
to avoid overlapping connections.

Given a patch-related block set, BinGo constructs the CPG-based
graph in two steps. First, we derive a CFG to only connect all patch-
related blocks, which indicates the internal connectivity of the
patch. Second, we extend a larger graph to cover all patch-related
blocks and connect them to their neighborhood basic blocks. That
is, we add more context basic blocks to the graph, as long as these
blocks are connected to patch-related blocks in the CFG, DDG,
or CDG. Such a graph representation further implies the external
impact of the patch. As shown in Phase II of Figure 2, the orange
node in the graph denotes the patch-related blocks and the pale
yellow node denotes the context blocks.
Graph Slicing.We adopt the graph slicing method to extract the
relevant node connections and detect all relevant basic blocks in
the CPG representation. Given a pair of pre-patch and post-patch
binaries, we first extract their CFG, CDG and DDG from the assem-
bly code. For the internal graph, we match the patch-related blocks
in the program-wide CFG to retain internal connections. For the
entire graph, we design a graph slicing algorithm.

The algorithm takes the patch-related block set (𝐵𝐵), the graph
relations including CFG, CDG, and DDG ({𝐺𝑐 𝑓 𝑔,𝐺𝑐𝑑𝑔,𝐺𝑑𝑑𝑔}), and
the slice stride (𝑛) as inputs, and outputs the sliced CPG-based
representation. Traversing each basic block from the block set,
BinGo first traces the control and data dependency relations be-
tween blocks. That is to find the predecessor and successor of the
current block in CFG, CDG, and DDG. Correspondingly, We will
create two collections (𝑓 𝑜𝑟𝑆𝑙𝑖𝑐𝑒𝑠 and 𝑏𝑎𝑐𝑘𝑆𝑙𝑖𝑐𝑒𝑠) to store the pre-
decessors and successors of all blocks, respectively. Next, BinGo
iteratively performs both forward and backward slicing to extract
all neighborhood blocks. The slice stride 𝑛 is a configurable param-
eter that represents the maximum distance from a context node to
the nearest patch-related node. The slicing process will terminate
after 𝑛 iterations or until the sliced graph structure converges. Fi-
nally, we connect the patch-related blocks 𝐵𝐵, the forward sliced

Pre-patch 
Binary

Post-patch 
Binary

Function
Embeddings

Patch
Related
Block

Function
Filtering

Block
Filtering

ICFG
Generation

Modified DeepBinDiff

(a) Arbitrary binaries.

Function
Matching

Symbol Table

Syntax-based
Function
Filtering

ICFG
Generation

Block
Filtering

Block
Embeddings

Modified DeepBinDiff

Patch
Related
Block

Pre-patch 
Image

Post-patch 
Image

(b) Images with symbol table.

Figure 4: The extraction of the patch-related blocks from
arbitrary binaries and the images with symbol table.

blocks 𝑓 𝑜𝑟𝑆𝑙𝑖𝑐𝑒𝑠 , and the backward sliced blocks 𝑏𝑎𝑐𝑘𝑆𝑙𝑖𝑐𝑒𝑠 as the
final CPG-based representation 𝑮 .

3.3 Embedding Generation
In the graph representation, the extracted nodes and edges cannot
be directly fed into the deep learning model. Thus, we convert the
graph topology into an adjacency matrix, which can represent the
node connection information. For the edges and nodes, we embed
their attributes into the numeric matrices, which are represented as
node embedding 𝑵 and edge embedding 𝑬 . Given a CPG represen-
tation 𝑮 = {𝑬 ,𝑵 }, we first define an adjacency matrix 𝑨 to denote
the connectivity of 𝑮 , where 𝑨𝑖 𝑗 = 1 represents that node 𝑖 and
node 𝑗 is connected, else 𝑨𝑖 𝑗 = 0 if they are unconnected. Because
there are three subgraphs in the CPG, i.e., CFG, CDG, and DDG,
𝑨(𝑘 ) denotes the connectivity in the k-th subgraph. Note that, each
subgraph in BinGo is a directed graph. For the edge representation,
we denote the matrix of edge embeddings as 𝑬 , where 𝑬 (𝑘 )

𝑑
is the

d-th edge in the k-th graph. 𝑬 (𝑘 ) is a vector that contains all edges
of the k-th subgraph. For the node representation, we denote the
matrix of node embeddings as 𝑵 , where 𝑵𝑖 is the i-th basic block
in the CPG. Also, nodes can be shared by different subgraphs. For
each node, we represent them with semantic embedding vectors.
A. Node Embedding
As shown in Phase III of Figure 2, we convert all nodes into the
numeric representation, including the patch-related blocks and the
context blocks. In binary code analysis, the most common numeric
representation is the statistic-based features, such as counting dis-
tinct tokens in basic blocks. These tokens refer to operators and
operands in instructions [2]. However, such an embedding method
focuses more on the syntactic features but neglects the semantic
information, which may be not fine enough for the subtle changes
in security patches. Unlike source code, binary code is also subject
to compiler optimizations. The same source code may be compiled
into different binaries with different optimization configurations.
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Therefore, the LM-based embedding model is utilized in BinGo due
to its powerful semantic understanding capability [10, 14, 16, 22, 36].

Embedding Model. The BinGo employs a BERT-based embedding
model [35] to learn the instruction semantics in the basic blocks.
The BERT model can learn the context semantics of the instructions
through specially designed self-supervised training tasks [24, 34].

Exploiting the transformer framework and attention mechanism,
BERT can learn long-range contextual semantics of the instruction
sequences in basic blocks. From the perspective of model structure,
BERT is stacked by multiple transformer encoder units that share
the same architecture. The BERT model consists of 12 transformer
layers, which share the same architecture. As shown in Figure 5,
the BERT tokenizes the input instruction sequences and encodes
them as initial embeddings. The model will continue updating the
embeddings via the transformer encoders. To distill the learning
capability of the model on the instruction semantics, we need to
train the model via well-designed training tasks. We denote the j-th
layer embedding as 𝐸𝑀 𝑗 and the encoder unit as 𝑓𝑒 , then the output
embedding in each encoder layer is expressed as 𝐸𝑀 𝑗+1 = 𝑓𝑒 (𝐸𝑀 𝑗 ).

Tokenization. Before we feed the instruction sequences into the
embedding model, we need to tokenize them. The basic way is to
decompose an instruction into one opcode and multiple operands.
However, the operand can be further subdivided. For example, given
an instruction "mov rax, qword [rsp+0x58]", we divide it into
"mov", "rax", "qword [rsp+0x58]" originally. Note that the operand
"qword [rsp+0x58]" is too complicated to cause an OOV (Out-Of-
Vocabulary) problem. Thus, we subdivide operands into more basic
tokens including registers (e.g., rax and rsp), constant (e.g., 0x58),
reserved words (e.g., qword), and operators (e.g., +, [, and ]).

Input Embedding. The input representation of the BERT model
is a composite embedding, concatenated by three parts: token se-
quence, segment sequence, and position sequence. The token se-
quence represents the tokenized instruction sequence. The segment
sequence is defined to locate which instruction each token belongs
to, while the position sequence denotes an integer sequence encod-
ing the position of each token in the instruction.
Pre-training task. The BERT model proposed two representative
pre-training tasks, that is, masked language model (MLM) and next
sentence prediction (NSP). MLM will train the model to predict
masked tokens in the input sequence, while NSP will train the
model to predict the next sentence according to the former one.
Liu et al. [27] found that the BERT model pre-trained only with
MLM can outperform that pre-trained with both tasks. Therefore,
we adopt the MLM task to train the BERT model.

In addition to the MLM task, there are also dedicated training
tasks proposed for learning assembly code semantics: Context win-
dow prediction (CWP) [24] and Def-use prediction (DUP) [21]. As
shown in top boxes of Figure 5, the CWP task is to predict if two
given instructions co-occur within a context window, where the
window size is preset. The DUP task is to determine the relative
order of two given instructions. The CWP can capture the control
flow information between instructions, while the DUP can grasp
the data dependency information across instructions. In this paper,
we choose the MLM, CWP, and DUP tasks to train our BERT-based
embedding model and then generate the node embedding.

   mov     ebb, esp

[CLS] mov ebb esp [SEP] movzx

ecx [ ebp + arg_0 ] [SEP]

   movzx   ecx, [ebp+arg_0]

Encoder Encoder Encoder

Encoder Encoder Encoder

Encoder Encoder Encoder

Encoder Encoder Encoder

Encoder Encoder Encoder

Encoder Encoder Encoder

Masked Language Model Context Window Prediction Def-Use Prediction

movzx  ecx, [ebp+arg_0]
mov    ebb, esp

mov    eax, [ebx]
mov    ebb, esp

mov    ebb, esp
movzx  ecx, [ebp+arg_0]

mov    (?), esp
movzx  ecx, [(?)+arg_0]

mov    ebb, esp
movzx  ecx, [ebp+arg_0]

movzx  ecx, [ebp+arg_0]
mov    ebb, esp

. . . . . .

. . . . . .

Figure 5: The pretraining of BERT-based embedding model.

B. Edge Embedding
Edge embedding is used to reflect the connectivity between two
nodes. The edges in the graph representation involve three types
of relationships, i.e., the control flow, control dependency, and data
dependency. The edge type refers to which type of connections
it belongs to. For example, [0, 0, 1] means the edge represents the
DDG, rather than CFG or CDG. Note that there may be multiple
edges (e.g., one from CDG and one from DDG) between two nodes.
Therefore, the edge embedding is designed as a 3-dimensional bi-
nary vector.

3.4 Graph Representation Learning
After converting the graph representation into the embedding for-
mat, BinGowill feed the embeddingmatrices into a detection model,
which can provide a powerful capability of graph understanding
by the graph neural networks.

As shown in Phase IV of Figure 2, our graph model adopts a
siamese structure consisting of two graph convolution networks.
Such a structure is conducive to processing pre-patch and post-
patch graph representations separately, which can emphasize the
differences caused by patches while maintaining similar contexts
before and after patches. Each graph network is stacked with the
convolution layers and the pooling layers.

As displayed in Figure 6, the graph convolution layer is a vari-
ant of the normal convolution layer in the CNN networks, updat-
ing the node embeddings by the message propagation among the
neighboring nodes. Note that, we limit the number of convolu-
tion layers to three because more convolution will cause the graph
over-smoothing issue [7], which means excessive convolution may
smooth the node attributes in the graph so that their information
is permanently lost. Behind the 3-layer graph convolution, we use
a graph pooling layer to aggregate all attributes to get the graph
embedding. Finally, a binary classifier constructed by multiple-layer
perceptron (MLP) is utilized to convert the graph embeddings into
predicted labels.
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Figure 6: Graph convolutional layer w/ multi-head attention.

Multi-Attributed Graph Convolution. The CPG is a compos-
ite graph with diverse edge attributes, representing different con-
nections in CFG, CDG, and DDG. Therefore, we adopt the multi-
attributed graph convolution mechanism to process multiple edge
types. That is, the graph convolution layer has three channels to
process the edge embeddings from different subgraphs.

When the convolution layer updates the node embedding, it
collects the embeddings from neighborhood nodes with different
subgraph connections. In other words, the graph connection in
each convolutional channel depends on the graph type, respec-
tively. Therefore, we train different weights for the each channel
of subgraph to learn semantics from different connection relations.
Formally, the convolution update can be formalized as follows:

𝑵 (ℎ+1) = ∥𝐾
𝑘=1𝝈

((
𝑨(𝑘 ) + 𝑰

)
· 𝑵 (ℎ) ·𝑾 (𝑘 )

ℎ

)
, (2)

where𝑨(𝑘 ) is the adjacency matrix of the k-th subgraph, and 𝐼 is an
identity matrix with the same size of 𝑨(𝑘 ) . 𝑵 (ℎ) denotes the node
embedding in the h-th convolution layer.𝑾 (𝑘 )

ℎ
is the convolution

weights of the k-th subgraph in the h-th layer, which will be trained
via the backpropagation. 𝐾 is the total number of subgraphs and 𝝈
is the activation function. Finally, the updated node embeddings
from different subgraphs will be aggregated to the convolution
result 𝑿 (ℎ+1) by the vector concatenation. The adjacency matrix
𝑨(𝑘 ) can be thought of as a filter that provides individual attention
for each subgraph to train convolution parameters.
Security Patch Classifier. Behind the convolution layer, a pooling
layer is used to reduce the embedding dimension. Then, the graph
embeddings from both GCN branches are concatenated as the input
embedding for the final classifier. Also, a dropout layer is performed
as a regularization method to prevent over-fitting in the model
training. To determine if a patch is security-related, a 3-layer fully
connected network is built to transform the graph embedding into
a binary probability output (𝑝0, 𝑝1), where 𝑝0 + 𝑝1 = 1. The higher
probability in the output indicates that a patch instance falls into
the category of security/non-security patch.

4 IMPLEMENTATION
In this section, we first introduce how to build the binary patch
dataset from a set of pre-collected source code patches. Then, we
discuss the implementation of four phases in BinGo, including patch
data pre-processing, graph extraction, embedding generation, and
graph representation learning.

4.1 Building Binary Patch Dataset
We build the binary patch dataset based on a pre-collected source
code patch dataset named PatchDB [46]. We obtain the patch infor-
mation from the PatchDB and download the corresponding source
code files from the GitHub repositories. In this paper, the most
challenging part is to compile all patch-related source code files
from different software repositories, which require different com-
pile commands and various suitable building environments. We
manually prepare the building environments for different software
in isolated Docker containers to avoid dependence conflicts, which
can provide the build logs. Then, we use a script to automatically ex-
tract patch-related source code files from GitHub repositories, and
select the correct compile commands and dependent files from the
build logs. For versatile evaluation of BinGo on this binary dataset,
we leverage two well-known compilers (i.e., Clang and GCC) to
compile these programs into binaries with different optimization
levels (i.e., O0, O1, O2, O3, and Os), respectively. Furthermore, we
generate the LLVM IR and the assembly code for each patch to
facilitate subsequent analysis work.
Compilation Command Database Preparation. Given a source
code file for a C program, we need to compile the program based on
two types of information, i.e., the dependent files and compiler con-
figuration. The dependent files include the header files and linked
source files, while the compiler configuration refers to the options in
the compile command line. It is not trivial to seek such complicated
information automatically, due to three main challenges. First, the
dependent files usually exist at different locations (e.g., ./deps/lua/src,
./src/lib/openjp2, ./eglib/src); thus, complex path relations are diffi-
cult to untangle in a general way. Second, some dependent files
are generated during the building process, rather than exist before
compilation (e.g., config.h, kdb_ldap.h, asm/linkage.h). Third, the
format of configuration scripts for automated compilation tools can
be largely different (e.g., autoreconf, autogen.sh).

To solve the above challenges, we propose an automatic extrac-
tion system to extract complete compile commands from the build
logs. We first manually build the software to collect the build logs.
Note that different versions of the same software may also have dif-
ferent dependencies and compilation configurations. Thus, we build
isolated Docker containers for each version to avoid dependence
conflicts. The build log is parsed into a queryable JSON format. For
each software, we build a compile command database to manage
the compilation information for each source code file.
Compilation Target.With different compilation configurations,
the same source code can even generate diverse assembly code,
as demonstrated in Section 2.2. To evaluate if BinGo can handle
the changes on compilation configurations, we leverage Clang [8]
and GCC [15] with different optimization levels to compile the
source code. However, using different compilers and optimization
levels means changing the original build environments, which may
cause compilation failure. For instance, the earlier versions of Linux
kernel can not be compiled with Clang [44], due to the incompat-
ibility with the LLVM toolchain. To solve this issue, we choose
the allyesconfig [33] to cover as many source code files as possi-
ble. The basic idea is to compile the Linux source code module by
module, while a module will be skipped if it cannot be compiled
successfully. The allyesconfig totally includes 16,599 modules,
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Figure 7: The workflow of binary patch generation via Clang
or GCC.

among which we successfully generate LLVM IR for 16,514 modules.
Furthermore, the "-g" option is used to generate debug information,
which is useful to investigate the code lines and to further locate
the patched assembly code snippets.
Automatic Binary Patch Generation. The workflow of binary
patch generation is shown in Figure 7. Given the patch information,
we can locate the pre-patch and post-patch software versions and
obtain patch-related source code files that contain the changed code
lines. For the sake of efficiency, we only compile the patch-related
source code files. According to the version information and the
source code filenames, we can query the corresponding compile
commands from the compilation command database for the pre-
patch and post-patch source code files.

Clang is able to translate the source code into the LLVM IR code
and directly perform optimization and program analysis according
to the modular LLVM toolchain. Therefore, in this work, we use
Clang to first generate the IR code and then compile it into the
binary code. However, different from the structure of Clang, the
front-end, middle-end, and back-end of GCC are coupled with each
other. GCC cannot directly perform optimization on the IR code.
Thus, we use GCC to compile the source code directly into the
binary code.

To ensure that the binary code compiled by GCC can be con-
verted into the same assembly and IR format as that compiled by
Clang, we also use the LLVM toolchain to disassemble the binary
compiled by GCC and lift it into LLVM IR code. As demonstrated in
Section 3.1, we locate the patch-related basic blocks in IR and assem-
bly code using the static analysis passes provided by LLVM [3, 50].
Also, we provide the CFG and the CPG-based graph features, which
are useful in not only security patch detection but also other patch
analysis tasks, such as vulnerability detection, patch presence, and
hot patch generation.

Table 1: The statistic of the dataset used to evaluate BinGo.

Patch Type #Patches #Funcs #Nodes #Edges
Avg Max Avg Max

security 1,278 10,630 22.81 840 107.7 7,012

non-security 1,620 14,410 30.38 1,588 150.19 16,933

Composition of Dataset. We retrieve target source code pro-
grams from Linux kernel and select 1,278 security patches (fixing
CVE vulnerabilities) and 1,620 non-security patches labeled by the
PatchDB [46]. PatchDB obtains the security/non-security patch
information from NVD and GitHub repositories. For this dataset,
we focus on the single-purpose patches whose commit message
only describes one issue, e.g., fixing a vulnerability or adding a new
feature. All these patches cover hundreds of different Linux kernel
versions. For the sake of efficiency, we only collect build logs for
the major version of the Linux kernel (e.g., v3.0.0 and v5.8.0). The
building environments of the minor versions only change slightly
compared with the neighboring major version, thus we can use the
same building environment for consecutive minor versions (e.g.,
v5.6-rc1 and v5.6-rc2).

For each patch, we compile the pre-patch and post-patch versions
with GCC and Clang under five different optimization levels (i.e.,
O0, O1, O2, O3, and Os). Because a patch may change code across
multiple functions, a patch may be related to multiple graphs. The
statistic information of generated patches is shown in Table 1. Note
that, the division ratio between the training set and the test set is
8:2 in the subsequent experiments.

4.2 System Implementation

Patched Block Extraction. For the training data in our self-built
benchmark, we precisely locate patch-related assembly blocks via
mapping relations within debug information. For the testing data,
we utilize the modified DeepBinDiff to collect patch-related blocks.
We first aggregate basic blocks into functions and then filter similar
functions according to the cosine distance of function embeddings.
Next, we filter similar basic blocks in the remaining functions,
which are identified patch-related blocks. To evaluate BinGo, we
totally extract 1,332,031 basic blocks from 2,898 patches, whose
statistical information is displayed in Table 1.
Graph Extraction. We leverage the angr framework [5] to im-
plement the graph slicing algorithm. To extract the internal graph
representation, we first build the CFG to connect all patch-related
nodes. Then, we search all relevant external nodes among all three
subgraphs, starting from the patch-related nodes. To reduce the
graph size and exclude relatively irrelevant nodes, we empirically
set the node searching within 2 hops. Also, we set the time limit
as 15 minutes for each graph generation to prevent path explosion.
Finally, all subgraphs are merged into a CPG. In total, we generate
6,457,351 edges in total for both security and non-security patches.

After extracting patch-related blocks and building the graph
representation, we find that the graph size of security patches is
more likely to be smaller than that of non-security ones, as shown in
Table 1. This observation is consistent with the findings in previous
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Figure 8: The generated twin graphs usingGCCwith different
optimization levels (CVE-2011-1581).

works [43, 57], which show there are usually fewer code changes in
the security patches than those in non-security patches. Besides, we
can also confirm that the binary code characteristics, i.e., the graph
representations may vary with different compilers and optimization
levels, even for the same patch. One example (CVE-2011-1581) is
shown in Figure 8.
Embedding Generation. The BERT-based embedding model is
implemented using pytorch 1.13 and BERT-pythorch 0.0.1a4. We set
the model structure with 12 encoder layers, each of which contains
8 attention headers. To cooperate with the input size of the sub-
sequent graph model, we also resize the embedding dimension of
the BERT model to 128. We adopt a BERT model pre-trained on
binary datasets with various compilers and optimization levels [34].
Based on the pre-trained model, we fine-tune the model to fit our
dataset in this paper, which is compiled from the Linux kernel.
The BERT-based model generates the node embedding, while the
edge embedding is a vector composed of the CFG, CDG, and DDG
connections. Finally, we integrate the node and edge embeddings
together into a unified numeric representation.
Graph Learning.The graph learning program is implementedwith
Python 3.9.16 while the neural network model is designed with
pytorch 1.13 and PyG 2.2. We also design a TwinGraph structure to
store and process the pre-patch and post-patch graphs at the same
time. In the training phase, the batch size is set to be 128. We use
Adam optimizer with 𝛽1 of 0.9, 𝛽2 of 0.99, and a learning rate of
0.001. To prevent the overfitting issue in graph classification, we
set a large dropout ratio of 0.5 in the training phase. We also use
the cross-entropy loss for the gradient descent. The training set
contains 20,031 graph pairs and the testing set contains 5,008 graph
pairs; i.e., the training ratio is set to 0.8. The training set and testing
set do not contain overlapping commits. The max iteration epoch
is 1,000 while the model loss becomes stable.

Table 2: The performance comparison of BinGo and two
baseline models for security patch detection.

Model Dataset General Metric Specific Metric
Accuracy F1-score FN rate FP rate

PatchRNN [47] Source 70.86% 0.379 72.97% 7.70%

GraphSPD [43] Source 85.28% 0.557 56.51% 5.05%

BinGo Binary 80.77% 0.759 29.15% 11.82%

5 EVALUATION
In this section, we evaluate the performance of BinGo on our binary
patch benchmark. We compare the accuracy of BinGo with the
state-of-art works on the security patch detection task. Meanwhile,
we evaluate the robustness of BinGo under different compilation
configurations, i.e., compilers and optimization levels.

5.1 Experiment Setup

Runtime Environments. The dataset generation, patch data pre-
processing, graph extraction, and embedding generation are de-
ployed in a Linux server with Intel Xeon E5-2650 @ 2.30 GHz and
512 GB memory, running Ubuntu 20.04 LTS. The GCN-based identi-
fication model is carried out in the Ubuntu 22.04 LTS environment
running in Intel Xeon Gold 5122 with 3.60 GHz CPU and 64 GB
RAM. The model training is conducted by one NVIDIA RTX 2080
Ti GPU of 11 GB memory with CUDA 11.7.
Evaluation Metrics. Security patch detection is a classification
task, so we use both general metrics and specific metrics to eval-
uate its effectiveness and practicality. General metrics, including
accuracy and F1-score, are used to evaluate the overall performance
of the classification model. Specific metrics are used to evaluate the
practicality of the detection system, including the false-negative
rate (FNR) and false-positive rate (FPR).

5.2 Performance on Security Patch Detection
We conduct a series of experiments to answer the following ques-
tions.

• RQ1: Does BinGo outperform the existing state-of-the-art
works?

• RQ2: Is BinGo robust on binary patches across different
compilers?

• RQ3: Is BinGo robust on binary patches across different
optimization levels?

RQ1: Does BinGo outperform the existing state-of-the-art
works? As shown in Table 2, the BinGo system can achieve up to
80.77% with an F1-score of 0.759 on the binary patch dataset. We
compare BinGo directly with the state-of-the-art source code level
detection systems PatchRNN [47] and GraphSPD [43]. Note that,
we retrained PatchRNN and GraphSPD based on the Linux kernel
part of PatchDB [46]. Therefore, the experimental results in Table 2
are comparable.

We can observe that the accuracy of BinGo is slightly inferior
to that of GraphSPD, yet it surpasses PatchRNN. Specifically, the
BinGo outperforms PatchRNN by 9.91% of accuracy and 0.380 of
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Table 3: The performance of BinGo across different compilers
and optimization levels.

Dataset General Metrics Specific Metrics
Accuracy F1-score FN rate FP rate

GCC

O0 82.2% 0.78 30.4% 7.6%
O1 68.5% 0.62 43.2% 22.0%
O2 83.0% 0.78 26.1% 10.6%
O3 81.9% 0.78 27.1% 10.6%
Os 66.3% 0.54 49.7% 22.9%

Total 76.4% 0.70 36.0% 14.1%

Clang

O0 89.1% 0.88 14.8% 7.5%
O1 86.3% 0.83 20.0% 9.3%
O2 94.6% 0.94 9.9% 1.6%
O3 95.1% 0.95 7.5% 2.5%
Os 90.5% 0.89 16.3% 4.2%

Total 90.3% 0.88 14.7% 5.7%

F1-score. Due to the interference caused by the compilation process,
the accuracy of BinGo is 4.51% lower than GraphSPD. However, the
BinGo model achieves a higher F1-score compared to state-of-the-
art graph models at the source code level, with an improvement of
0.202. The much higher F1-score indicates that BinGo has better
precision and recall performance.

To investigate such a performance improvement, we can further
compare BinGo with PatchRNN/GraphSPD from the perspective of
feature construction and model structure. PatchRNN adopts a se-
quential embedding model, similar to word2vec [2], to convert the
code changes in patches into an embedding representation and uses
the twin-structured RNN model as a classifier. Similar to BinGo,
GraphSPD constructs the CPGs of both pre-patch and post-patch
code; however, GraphSPDmerges them into one graph and does not
use the sequential embedding model to extract the code semantics.
Also, GraphSPD utilizes the GCN to learn the merged patch graph
representation and to identify the security patches. In contrast,
BinGo has the advantages of both methods. From the perspective
of feature representation, BinGo uses the BERT-based embeddings
as node attributes in the CPG representation. In addition, BinGo
adopts the TwinGraph structure to reserve the features of both
pre-patch and post-patch graphs. From the perspective of model
structure, BinGo adopts the siamese network architecture (same
as PatchRNN) to support the pre-patch and post-patch inputs si-
multaneously; however, each branch of siamese network leverages
the GCN structure due to the graph representation. From the ex-
perimental results, the feature fusion and the TwinGraph structure
play a critical role in BinGo by capturing more enriched syntax and
semantic features. Although the security patch detection in binary
code is more complex than that in source code, BinGo still achieves
considerable accuracy and F1-score.
RQ2: Is BinGo robust on binary patches across different com-
pilers? To better understand the impact of compilation on security
patch detection, we show the performance of BinGo under various
compilers and optimization levels in Table 3. From the results, we

notice that BinGo performs much better on the patches compiled
by Clang than those compiled by GCC, no matter under which
optimization level. Specifically, the overall accuracy of BinGo un-
der Clang is 13.9% higher than that under GGC; meanwhile, the
F1-score under Clang is 0.18 higher than that under GCC.

Another important observation is that the number of patches
successfully compiled by Clang is far less than that successfully
compiled by GCC, due to the high failure rate of compilation. As
shown in Figure 9, the ratio of patches compiled by Clang and GCC
is 1:2.7. We maintain the same sample ratio for Clang and GCC in
both training and validation phases, which means BinGo trains on
fewer patches compiled by Clang but learns more salient semantics
for better recognition performance.

Such a counter-intuitive result is caused by the inherent mech-
anism of Clang and the code analysis toolchain (i.e., the LLVM
toolchain). On the one hand, the binary patches will be decom-
posed into more basic blocks due to the compilation mechanism of
Clang, hence containing more data dependencies and control de-
pendencies. We analyze the number of nodes and edges in the CPGs
extracted by BinGo over different compilation configurations. In
Figure 10, we count the average number of nodes and edges in both
the pre-patch and post-patch graphs.We find that BinGo can extract
more nodes and edges for the patches compiled by Clang. Also,
with the compilation of Clang, the graph size difference between
security patches and non-security ones is more significant. This
means, from the perspective of graph representation, the patches
compiled by Clang are more distinguishable that those compiled
by GCC.

On the other hand, we notice that compared with the patches
compiled by Clang, the patches compiled by GCC may suffer from
the imprecise issue during the disassembly, basic block extraction,
and CPG construction. This is because the analysis tools used in
this paper are all based on the LLVM toolchain (as mentioned in Sec-
tion 4.1). Because Clang belongs to the LLVM toolchain, BinGo has
better compatibility over the patches compiled by Clang. Previous
works [4, 16] also introduce the unreliability of reverse engineering
tools.

Figure 9: The number of successfully compiled binary
patches across compilers and optimization levels.

RQ3: Is BinGo robust on binary patches across different opti-
mization levels? Table 3 shows the performance of BinGo over
different optimization levels. Compiled by Clang, BinGo can achieve
better accuracy and F1-score on the patches with higher optimiza-
tion levels (e.g., O2 and O3); however, the performance of BinGo
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on low optimization levels (e.g., O0 and O1) is relatively poor, with
the accuracy lower than 90% and an F1-score of 0.88. Also, BinGo
can achieve moderate performance on the patches optimized with
Os. Nevertheless, the performance gap of BinGo over different op-
timization levels does not exceed 10%. Compared to Clang, the
performance over different optimization levels maintains a similar
trend on GCC-compiled patches. However, we also notice that the
performance of Os-optimized patches drops dramatically to 66.3% if
compiled by GCC. In this case, the performance gap reaches 16.7%,
compared with both high and low optimization levels.

To investigate the performance trend across optimization levels,
we first observe the graph features extracted by BinGo under dif-
ferent optimization levels. As shown in Figure 10, we notice that
BinGo can extract more nodes and edges for the patches with high
optimization levels, while the size of generated graphs with low
optimization levels will be relatively small. Among different op-
timization levels, BinGo extracts the fewest nodes and edges for
the O1-optimized patches. The distribution is consistent with the
general performance trend of O0, O1, O2, and O3 for both Clang-
compiled and GCC-compiled patches. Therefore, we can conclude
that the higher the optimization level, the better the identification
performance of BinGo. Moreover, after comparing the number of
nodes and edges for security patches and non-security patches,
we find that the patches compiled by GCC with Os have the most
subtle differences (as shown in Figure 10(a) and 10(c)). This also
explains why the performance of BinGo drops drastically under
this scenario.

Second, we find that GCC and Clang support different sets of
optimization flags. For the GCC, Os selects optimization options in
O2 that do not increase the object file size; while for Clang, Os is
a combination of O2 with extra optimizations to reduce code size.
Therefore, compared with O2, there are even fewer optimization
items in Os if compiled by GCC. This is another possible reason
for the performance of BinGo in this case. In practice, O2 is the
default optimization level used in most scenarios, while Os is merely
used in compilation environments with tight memory resources.
Therefore, the performance of BinGo under the GCC compiler with
Os optimization is acceptable.

5.3 False Positive and False Negative
In the security patch detection task, a false positive (FP) means that
a real non-security patch is misidentified as a security patch. A
false negative (FN) represents that a real security patch was missed
out. From Table 2, we can observe that BinGo achieves the best
FNR of 29.15%, which is only half of the FNR in these two baseline
approaches. Also, the FPR (11.82%) of BinGo is worse than that of
PatchRNN (7.70%) and that of GraphSPD (5.05%). That means the
users may get twice as many false security patch alerts when using
BinGo to detect binary patches. However, the FPR is acceptable con-
sidering the extreme imbalance between non-security and security
patches in practice. The security patches only account for 6-10%
in open source software (OSS) [46]. Therefore, both FPR and FNR
of BinGo are better than those of the previous methods in general,
which is consistent with the results in the F1-score.

Next, we compare the specific performance (FNR and FPR) of
BinGo across compilers and optimization levels.We observe that the

(a) #nodes of graphs w/ GCC.

(b) #nodes of graphs w/ Clang.

(c) #edges of graphs w/ GCC.

(d) #edges of graphs w/ Clang.

Figure 10: The graph size of patches with different compilers
and optimization levels.

trend of FPR and FNR of BinGo is consistent with that of F1-score.
It is worth noting that even in the worst case (under GCC with
Os optimization), our BinGo still outperforms previous methods.
Considering that the comparison in this paper is between source
code patches and binary patches, the actual performance of BinGo
can even advance more against the previous methods.

6 DISCUSSION
The evaluation results demonstrate that BinGo can effectively iden-
tify the security patches in binary code. Although the composition
of binary code changes with the compiler and optimization level,
BinGo is robust to eliminate such noisy impact caused by compi-
lation. BinGo is able to identify hidden security patches released
by the software vendors or from any binary code diffing between
neighboring software versions. BinGo can help developers or IT
operators discover binary with security patches, and update them
selectively, so as to maintain the stability and security of functions.
Besides, our survey found that 58.55% (469/801) of security patches
appear in the same function. If we fix a bug in the binary, BinGo can
locate the function to be modified, and the developer can replace
only the relevant function. This reduces the complexity of manual
repair.

However, we also notice that BinGo still has some limitations, so
corresponding further work can be taken into consideration. First,
BinGo does not consider a scenario that two patches coexist in
one binary version, in which we need to split the tangled patches.
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Existing work [37, 42] has achieved patch untangling at the source
code level, but there is no similar work at the binary level so far.
Therefore, we leave the untangling solution for binary patches in
our future work. Second, BinGo does not consider the semantics
of the callee function when constructing the CPG representation.
That is, if the patch involves a function call, the CPG only involves
the basic blocks in the caller function, but not those in the callee.
However, if all callee procedures are included, the CPG will be
too large to be learned. Therefore, in further work, the trade-offs
between more semantics and compact graphs are required. Addi-
tionally, security patches can be further categorized, which may be
helpful to reduce false negative rates. In our dataset, the category
distribution of security patches is not uniform, e.g., the If-then-else
structures account for more than 70% of security patches. Accord-
ingly, when identifying security patches of a minority category, the
false negative rate may be high. With more security patch types,
BinGo can be well-trained to better classify security patches.

7 RELATEDWORK

Code Representation. Regardless of whether it is source code
or binary code, extracting the code representation is the first step
in the program analysis. The graph representation is the natural
way to represent the intrinsic program flow structure [1, 53, 55].
By defining different edges and nodes, graphs can be utilized for
diverse program analysis tasks. For example, Yamaguchi et al. [53]
first defined the code property graph (CPG) by integrating multiple
types of graphs to detect the vulnerabilities. Ji et al. [19] encoded
multiple statistical features into the attributed control flow graph
(ACFG) to identify the compilation provenance. Inspired by the pop-
ularity of the large language model (LLM), researchers employed
self-supervised sequence embedding models [10, 22, 36] to cap-
ture the textual semantics from code [14, 24, 26]. In industry, the
LLM-based embedding model has achieved good performance in
code generation and debugging tasks, such as the Codex [32], and
ChatGPT [31].
Patch Analysis. Due to the development of open-source software
(OSS) and program reuse, patch analysis has become especially
important for the security of the software supply chain [23, 40].
Wang et al. [46] collected massive patch information from the NVD
database and GitHub and provided a benchmark for patch analysis.
Li et al. [23] empirically studied the syntax structure of security
patches, revealing multiple significant behaviors. Patch analysis
facilitates several downstream tasks, such as vulnerability detection
and automated program repair. On the one hand, security patch
detection is the mirror problem of vulnerability detection [9, 20,
54, 56]. Detecting a security patch indicates the corresponding
vulnerability has been fixed. Tian et al. [41] utilized textual and
code features of source code to detect bug-fixing patches in Linux.
Zhang et al. [54] proposed the patch presence test for binaries,
which maps the patch patterns in source code changes and checks
the presence of such patterns in the binary code. On the other
hand, researchers analyze the pattern and structure of security
patches and imitate them to generate patches automatically [11, 30].
Aravind et al. [28] defined the safe patch that does not disrupt the
intended functionality of the program. Such a safe patch can be
propagated in the software supply chain. Xu et al. [52] proposed

Vulmet which can automatically generate hot patches for Android
via learning patch semantics. Wang et al. [48] further used the
random forest with extracted patch features to classify security
patches into specific vulnerability types.
Security Patch Identification. All the above works have a com-
mon premise that the object patch must be security-related. Distin-
guishing between security patches and non-security patches can
warrant such an assumption. Researchers constructed syntactic and
semantic features from the source code and commit messages, then
employed machine learning (ML) or even deep learning (DL) based
classifiers to distinguish security patches from other patches [17].
For example, PatchRNN [47] and SPI [57] identify security patches
with RNN models. Wang et al. [43] developed graphSPD, which
conducted multiple-attribute graph representation based on the
commit information and exploited the graph learning model to de-
tect security patches. Regarding binary patch detection, to the best
of our knowledge, there is no existing work that focuses on distin-
guishing security patches from non-security ones. Thus, BinGo is
the first approach that focuses on detecting binary security patches.

8 CONCLUSION
In this paper, we propose BinGo, a new end-to-end binary patch
identification system. BinGo can be performed in two steps. BinGo
first leverages the code property graph and LM-based embedding
model to encode the semantics of binary patches, and then distin-
guishes the security patches via a Siamese-structured GCN model.
BinGo can help users and developers select critical security patches
from unknown binary patches to ensure software security and func-
tional stability. To train and evaluate BinGo, we also propose an
automatic approach to generate a binary patch dataset according
to known patch information in the source code. We implement a
prototype of BinGo and conduct experiments to evaluate the effec-
tiveness and robustness of BinGo. The experimental results show
that BinGo can achieve great performance (80.77% accuracy and
0.759 F1-score) for identifying security patches. Binary patches can
be harder to detect compared to source code patches due to vari-
ous compilation configurations. However, BinGo outperforms the
state-of-art solutions that focus on identifying patches in source
code, and exhibits good robustness to patches across compilers
and optimization levels. In addition, the experimental results show
that BinGo has fewer false alarms, which means that BinGo rarely
misses or misidentifies security patches.
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