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Google achieves about 95% TLS encryption 
across its products and services



TLS encrypted traffic classification provides valuable information for 
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TLS Encryption
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Payload become unrecognized after being encrypted by TLS 
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Deep Learning Models in TLS Traffic Classification

● TLS Traffic classification on packet length sequencescan paths
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Network
Traffic

Amazon 517, 51, 163, 46, 86, 77, 168,  ...

Facebook 517, 51, 163, 380, 161, 38, 46, ...

Google 190, 126, 485, 484, 485, 764, ...
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Diverse Network Environments

● Traffic may be affected by network environments in practice 

○ Packet Loss

○ Routing Path
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Performance in Diverse Network Environments

● DL-based classification in diverse network environments scan 

paths
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Experimental Setup for Replayed TLS traffic

● Diverse Network Environments Construction  

○ Location and Access mode 

● Replayed Dataset

○ CIRA-CIC-DoHBrw-2020

● Models

○ CNN, LSTM, SDAE, DF, FS-Net, 

      Transformer
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Different Network Enviroments 
for Replayed Traffic



Evaluation on Various Deep Learning Models

● Mainstream deep learning models in Replayed Traffic (Trained in θ0)
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avg 
accuracy: 
-39.86%

avg 
accuracy: 
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Experimental Setup for Real TLS Traffic

● Diverse Network Environments Construction

○ Location and Access mode 

● Traffic datasets

○ Website traffic dataset: 

■ 1.8 million TLS flows from 12 websites

● Models: 

○ CNN, LSTM, SDAE, DF, FS-Net, Transformer
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Different Network Enviroments 
for Real TLS Traffic



Evaluation on Various Deep Learning Models

● Mainstream deep learning models in real website traffic (Trained in τ1) 
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avg 
accuracy: 
-19.09%

avg 
accuracy: 

-17.78%Baseline



Understanding Performance Degradation
● Three phenomenons observed in diverse network environments 

○ Phenomenon-I: packet subsequence shift (caused by packet loss)

○ Phenomenon-II: packet subsequence duplication (caused by packet loss)

○ Phenomenon-III: packet size variation (caused by delay variation)
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How to enable robust traffic classification 
in various environments?

● Contribution I: 

Make deep learning models aware of these regular packet 
sequence changes with TCP semantics.

● Contribution II:

Extract robust features from flows for traffic classification.

14



 Rosetta Overview
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 Rosetta Overview
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Generate flow variants with TCP- 
Aware Traffic Augmentation  



 Rosetta Overview

17

Extract feature vectors from flow variants 
by Traffic Invariant Extractor (TIE) 



 Rosetta Overview
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Reduce the distance among feature vectors 
of flow variants coming from the same flow



 Rosetta Overview
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Extract robust features 
from flows for training



 Rosetta Overview
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Extract robust features 
from flows for testing



TCP-Aware Traffic Augmentation

● Three types of traffic augmentation algorithms 

○ Packet Subsequence Duplication Augmentation

■ Fast retransmit and RTO

○ Packet Subsequence Shift Augmentation

■ Fast retransmit and RTO

○ Packet Size Variation Augmentation
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TCP-Aware Traffic Augmentation
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An example of Packet Subsequence Duplication Augmentation via Fast Retransmit

Original sequence:

Augmented sequence: 200
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TCP-Aware Traffic Augmentation
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An example of Packet Subsequence Duplication Augmentation via RTO

Original sequence:

Augmented sequence: 200
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TCP-Aware Traffic Augmentation
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An example of Packet Subsequence Shift Augmentation via Fast Retransmit

Original sequence:

Augmented sequence:



TCP-Aware Traffic Augmentation
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An example of Packet Subsequence Shift Augmentation via RTO

Original sequence:

Augmented sequence:



TCP-Aware Traffic Augmentation
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An example of Packet Size Variation Augmentation

Original sequence:

Augmented sequence:



Traffic Invariant Extractor (TIE)
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● Loss Function of TIE



Traffic Invariant Extractor (TIE)
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● Loss Function of TIE

● Robust Feature Extraction 

Large distance among feature vectors of flow 
variants coming from the same flow



Traffic Invariant Extractor (TIE)
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● Loss Function of TIE

● Robust Feature Extraction 

Large distance among feature vectors of flow 
variants coming from the same flow

Small distance among feature vectors of flow 
variants coming from the same flow



Evaluation with Rosetta

● Improvement on replayed traffic 
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Significant improvement

Significant improvement



● Improvement on real website traffic 

Evaluation with Rosetta
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Significant improvement

Improved in all the wired networks

Improved in all the wireless networks



Feature visualization in 2D space
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Feature vectors extracted by DF Feature vectors extracted by Rosetta



Evaluation on Traffic Augmentation Algorithms

● Compare with other data augmentation methods

○ Random Mask (RM) and Random Shift (RS) in NLP

○ Model: DF
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 Better than other data augmentation methods in most networks



Conclusion

● Mainstream DL models cannot robustly classify TLS encrypted traffic in 

different network environments.

● Rosetta enables robust TLS encrypted traffic classification by

○ TCP-aware traffic augmentation

○ Traffic invariant extractor

● We improve the encrypted traffic classification performance of existing 
DL models for replayed and real network traffic.
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Thank you and Questions?
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Contact:
xrj21@mails.tsinghua.edu.cn

mailto:ligy18@mails.Tsinghua.edu.cn

