Rosetta: Enabling Robust TLS Encrypted Traffic Classification in Diverse Network Environments with TCP-Aware Traffic Augmentation

Renjie Xie, Jiahao Cao, Enhuan Dong, Mingwei Xu, Kun Sun Qi Li, Licheng Shen, Menghao Zhang

TLS Encryption Protocol

TLS encryption is widely accepted by various applicaions

TLS encrypted traffic classification provides valuable information for

TLS Encryption

HTTP

0010	01	84	48	ab	40	00	40	06	b4	fc	c0	a8	7b	66	22	6b	• • H • @ • 👩 •	••••{f"
0020	dd	52	87	7e	00	50	ef	1a	03	ed	a3	81	39	2e	50	18	· R · ~ · P · ·	····9.F
0030	fa	18	3d	43	00	00	47	45	54	20	2f	73	75	63	63	65	· · = C · · GE	T /succ
0040	73	73	2e	74	78	74	3f	69	70	76	34	20	48	54	54	50	ss.txt?i	pv4 HTT
0050	2f	31	2e	31	0d	0a	48	6f	73	74	3a	20	64	65	74	65	/1.1··Ho	st: det
0060	63	74	70	6f	72	74	61	6c	2e	66	69	72	65	66	6f	78	ctportal	.firefo
0070	2e	63	6f	6d	0d	0a	55	73	65	72	2d	41	67	65	6e	74	.com · · Us	er-Ager
0080	3a	20	4d	6f	7a	69	6c	6c	61	2f	35	2e	30	20	28	58	: Mozill	a/5.0 (
0090	31	31	3b	20	55	62	75	6e	74	75	Зb	20	4c	69	6e	75	11; Ubur	tu; Lir
00a0	78	20	78	38	36	5f	36	34	3b	20	72	76	3a	31	30	39	x x86_64	; rv:10
00b0	2e	30	29	20	47	65	63	6b	6f	2f	32	30	31	30	30	31	.0) Geck	0/20100
0000	30	31	20	46	69	72	65	66	6f	78	2f	31	31	35	2e	30	01 Firef	ox/115.
00d0	0d	0a	41	63	63	65	70	74	3a	20	2a	2f	2a	0d	0a	41	 Accept 	: */*
00e0	63	63	65	70	74	2d	4c	61	6e	67	75	61	67	65	3a	20	ccept-La	nguage:
00f0	7a	68	2d	43	4e	2c	7a	68	Зb	71	3d	30	2e	38	2c	7a	zh-CN, zh	;q=0.8,
0100	68	2d	54	57	3b	71	3d	30	2e	37	2c	7a	68	2d	48	4b	h-TW;q=0	.7,zh-F
0110	3b	71	3d	30	2e	35	2c	65	6e	2d	55	53	3b	71	3d	30	;q=0.5,e	n-US;q=
0120	2e	33	2c	65	6e	3b	71	3d	30	2e	32	0d	0a	41	63	63	.3,en;q=	0.2 · · Ac
0130	65	70	74	2d	45	6e	63	6†	64	69	6e	67	3a	20	67	7a	ept-Enco	ding: g
0140	69	70	2c	20	64	65	66	6C	61	74	65	Θd	0a	43	6f	6e	ip, defl	. ate⊶Co
0150	6e	65	63	74	69	6†	6e	3a	20	6b	65	65	70	2d	61	6C	nection:	keep-a
0160	69	76	65	Θd	0a	50	72	61	67	6d	61	3a	20	6e	6f	2d	ive Pra	gma: no
0170	63	61	63	68	65	Θd	0a	43	61	63	68	65	2d	43	61	6e	cache	ache-Co
0180	/4	12	61	6C	3a	20	be	61	2d	63	61	63	68	65	⊎d	⊎a	trol: no	-cache
0190	٥d	0a																

HTTPs

	0010	03	68	72	bf	40	00	2e	06	ba	7e	d1	bc	0e	87	C0	a8	•hr • @•. •	.~
	0020	7b	66	01	bb	9f	82	43	53	9a	b8	af	db	61	28	50	18	{f····CS	····a(P·
	0030	f8	93	fd	21	00	00	54	5c	61	06	30	61	2d	78	d5	99	· · · ! · · T \	a · 0a - x · ·
	0040	4e	91	02	d1	ca	da	a1	67	95	38	67	0a	43	14	d6	eb	N····g	· 8g · C · · ·
	0050	41	4a	e6	a1	93	a2	44	36	be	51	fd	45	ef	cd	03	c4	$AJ \cdots D6$	·Q·E····
	0060	30	f8	de	dd	61	d4	b1	fa	57	11	fa	73	bd	1f	47	cf	0···a···	W··s··G·
	0070	25	42	88	16	91	0b	86	Зb	e5	b0	1d	29	b6	6e	0f	17	%B · · · · ;	· · ·) · n · ·
	0080	75	46	4d	19	3a	82	ca	b3	0a	f9	56	b2	02	51	97	58	uFM · : · · ·	· · V · · Q · X
	0090	00	c5	64	d9	1d	cd	bc	e2	e8	66	1c	90	73	d7	01	39	· · d · · · · ·	·f··s··9
	00a0	f3	56	cd	c3	c9	0f	95	d5	03	02	6f	98	d9	e3	04	26	· V · · · · ·	· · 0 · · · &
N	00b0	77	73	5d	e0	64	ed	44	53	35	dd	01	21	23	16	4e	f1	ws]·d·DS	5 · · ! # · N ·
	00c0	f1	f2	59	35	4e	39	eb	c7	e4	17	b7	58	d3	b3	fc	fc	• • Y5N9 • •	· · · X · · · ·
	00d0	04	e5	65	59	e8	8d	2e	ea	7d	dc	86	b3	4a	d6	c6	05	··eY··.·	} · · · J · · ·
	00e0	9c	98	5e	b9	0d	9b	e5	a2	d9	97	43	99	84	5f	61	6b		···C···_ak
	00f0	93	cd	10	3e	92	8d	37	31	73	af	b8	a1	a0	3f	c6	17	>71	s · · · ? · ·
	0100	7b	5d	f1	6d	30	dc	0c	9e	63	16	31	7b	ac	3e	99	69	{] · m⊙ · · ·	c · 1{ · > · i
	0110	42	3f	e0	18	9d	c2	92	8a	cd	25	52	55	bc	fb	2c	cc	B? · · · · ·	•%RU •• , •
ILS	0120	18	47	e0	†8	05	61	15	ca	62	a2	7†	dd	97	†5	53	9a	G···a··	b · · · · S ·
	0130	8b	27	cd	ea	5a	09	a7	8d	b6	9†	8d	8d	ca	3d	e3	tc	· ' · · Z · · ·	
Encryption	0140	eo	†1	e8	30	†7	2d	bf	d3	7d	35	e4	98	45	0a	C6	34	<	}5··E··4
	0150	1b	13	9d	b0	Of	bb	99	0d	88	CC	0a	d5	10	31	27	c4		····?'·?'·
	0160	1d	т4	bΘ	a2	50	80	51	95	ec	90	a6	69	D6	10	bd	D5	· · · · [·_·	· · · 1 · p · ·
	0170	ac	ec	db	/b	c4	13	12	e5	50	be	a4	91	28	91	8e	eb	···{··r·	1(
	0180	C.d	ca	dt	Th	т4	81	ωh	/ d	66	ъл	na	ча	a5	hĥ	(-)(-)	4a		T · · · · T · .]

Payload become unrecognized after being encrypted by TLS

Deep Learning Models in TLS Traffic Classification

• TLS Traffic classification on **packet length sequence**

Training

Deep Learning
Models

Amazon	517, 51, 163, 46, 86, 77, 168,
Facebook	517, 51, 163, 380, 161, 38, 46,
Google	190, 126, 485, 484, 485, 764,

Diverse Network Environments

- Traffic may be affected by network environments in practice
 - Packet Loss
 - Routing Path

Performance in Diverse Network Environments

• DL-based classification in diverse network environments

Experimental Setup for Replayed TLS traffic

- Diverse Network Environments Construction
 - Location and Access mode Ο
- **Replayed Dataset**
 - CIRA-CIC-DoHBrw-2020 \bigcirc
- Models
 - CNN, LSTM, SDAE, DF, FS-Net, Ο

Different Network Enviroments for **Replayed** Traffic

Network Type	Env. ID	Sender Loc.	Receiver Loc.	Access mode	
	θ ₀	Local LAN	Local LAN		
Wired	Θ_1	China	China	Ethernet	
whea	θ_2	Korea	China		
	θ ₃	USA	China		
	θ_4	China	China	Wi-Fi	
Wireless	θ_5	China	China	4G LTE	
	θ_6	China	China	3G WCDMA	

Transformer

Evaluation on Various Deep Learning Models

Mainstream deep learning models in **Replayed Traffic** (Trained in θ_{0})

		I	Different V	Wired Net	work Env	Different Wireless Access Network Environments								
Model	Θ_0		Θ_1		θ_2		e) ₃	e	4	e)5	6	6
	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1
CNN	99.89%	99.84%	98.21%	98.20%	53.16%	34.91%	57.04%	36.32%	87.47%	87.03%	74.42%	71.52%	53.26%	34.96%
SDAE	95.47%	95.46%	91.47%	91.47%	56.21%	43.40%	55.75%	36.04%	88.11%	88.03%	82.11%	81.42%	55.16%	41.73%
LSTM	95.26%	95.25%	87.68%	87.47%	53.05%	35.07%	57.04%	36.57%	82.00%	81.19%	70.84%	67.34%	53.58%	36.08%
DF	99.89%	99.84%	98.42%	98.41%	53.26%	34.75%	58.03%	36.72%	88.00%	87.57%	74.95%	72.17%	53.37%	35.00%
FS-Net	92.11%	92.10%	90.74%	90.71%	61.16%	52.11%	58.10%	39.66%	88.84%	88.76%	83.68%	83.30%	56.84%	44.50%
Transformer	99.56%	99.36%	98.28%	96.00%	62.22%	54.12%	57.04%	42.00%	93.74%	91.35%	85.62%	83.12%	54.27%	47.57%
On Average	97.03%	96.98%	94.13%	93.71%	56.51%	42.39%	57.17%	37.89%	88.03%	87.32%	78.60%	76.48%	54.41%	39.97%
	Base	eline]				a	/g					accu	/g racy:

accuracy: -39.86%

accuracy: -42.68%

Experimental Setup for Real TLS Traffic

- Diverse Network Environments Construction
 - Location and Access mode
- Traffic datasets
 - Website traffic dataset:
 - 1.8 million TLS flows from 12 websites

Different Network Enviroments for **Real** TLS Traffic

Network Type	Env. ID	Client Loc.	Access mode		
	τ_1	China			
Wired	τ_2	Korea	Ethernet		
	τ_3	USA			
	τ_4	China	Wi-Fi		
Wireless	τ_5	China	4G LTE		
	τ_6	China	3G WCDMA		

- Models:
 - CNN, LSTM, SDAE, DF, FS-Net, Transformer

Evaluation on Various Deep Learning Models

• Mainstream deep learning models in real website traffic (Trained in τ_1)

	I	Different V	Wired Net	work Env	vironmen	Different Wireless Access Network Environments							
Model	τ	1	τ_2		1	3	τ	4	τ	5	τ	6	
	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1	
CNN	89.55%	89.28%	81.48%	80.88%	57.73%	52.29%	72.51%	68.51%	67.16%	60.15%	70.63%	68.73%	
SDAE	82.37%	79.79%	78.13%	74.79%	70.04%	68.80%	68.04%	67.98%	64.57%	64.20%	69.94%	64.01%	
LSTM	81.85%	77.39%	76.72%	74.08%	62.71%	57.26%	60.89%	60.04%	66.93%	63.60%	66.41%	61.67%	
DF	91.27%	91.15%	83.95%	80.58%	83.59%	83.50%	79.90%	75.00%	70.67%	66.91%	73.03%	70.17%	
FS-Net	85.81%	81.42%	73.02%	72.20%	64.42%	61.97%	70.14%	68.39%	64.84%	65.42%	67.65%	66.48%	
Transformer	84.85%	82.13%	70.97%	69.57%	62.66%	58.46%	63.71%	62.14%	78.98%	75.38%	61.37%	59.74%	
On Average	85.95%	83.53%	77.38%	75.35%	66.86%	63.71%	69.20%	67.01%	68.86%	65.94%	68.17%	65.13%	
avg										a	/g		

accuracy:

-19.09%

Baseline

avg accuracy: -17.78%

Understanding Performance Degradation

- Three phenomenons observed in diverse network environments
 - Phenomenon-I: packet subsequence shift (caused by packet loss)

• Phenomenon-II: packet subsequence duplication (caused by packet loss)

• Phenomenon-III: packet size variation (caused by delay variation)

How to enable robust traffic classification in various environments?

• Contribution I:

Make deep learning models aware of these regular packet sequence changes with TCP semantics.

• Contribution II:

Extract robust features from flows for traffic classification.

- Three types of traffic augmentation algorithms
 - Packet Subsequence Duplication Augmentation
 - Fast retransmit and RTO
 - Packet Subsequence Shift Augmentation
 - Fast retransmit and RTO
 - Packet Size Variation Augmentation

An example of Packet Subsequence Duplication Augmentation via Fast Retransmit

An example of Packet Subsequence Duplication Augmentation via RTO

An example of Packet Subsequence Shift Augmentation via Fast Retransmit

An example of Packet Subsequence Shift Augmentation via RTO

An example of Packet Size Variation Augmentation

Traffic Invariant Extractor (TIE)

• Loss Function of TIE

$$\mathcal{L}_{\alpha,\zeta} = \| \overline{p_{\alpha}}(m_{\alpha}) - \overline{m_{\zeta}'} \|_{2}^{2} = 2 - 2 \cdot \frac{\langle p_{\alpha}(m_{\alpha}), m_{\zeta}' \rangle}{\| p_{\alpha}(m_{\alpha}) \|_{2} \cdot \| m_{\zeta}' \|_{2}}$$

Traffic Invariant Extractor (TIE)

• Loss Function of TIE

Traffic Invariant Extractor (TIE)

• Loss Function of TIE

Evaluation with Rosetta

• Improvement on replayed traffic

			Different Wired Ne				
Model	θ	1	θ	2	e	3	
	AC	F1	AC	F1	AC	F1	
CNN + Rosetta	93.05% (↓5.16%)	93.03%(\\$.17%)	82.00% (†28.84%)	81.78%(†46.87%)	83.72% (†26.68%)	82.85%(^46.53%)	
SDAE + Rosetta	91.89% (↑0.42%)	91.77%(^0.30%)	86.63% (†30.42%)	86.63%(†43.23%)	84.17% (†28.42%)	83.69%(^47.65%)	
LSTM + Rosetta	86.63% (\1.05%)	84.03%(\	79.89% (†26.84%)	78.32%(†43.25%)	82.00% (†24.96%)	78.98%(^42.41%)	Significant improvement
DF + Rosetta	94.42% (\4.00%)	94.39%(\4.02%)	86.63% (†33.37%)	86.63%(†51.88%)	86.01% (†27.98%)	85.83%(^49.11%)	
FS-Net + Rosetta	89.26% (↓1.48%)	89.12%(\1.59%)	84.63% (†23.47%)	84.47%(†32.37%)	84.17% (†26.07%)	83.50%(^43.84%)	
Transformer + Rosetta	94.11%(↓4.17%)	93.74%(\2.26%)	84.11% (†21.89%)	83.60%(†29.48%)	83.37% (†26.33%)	80.38%(†38.38%)	
On Average	91.56% (↓ 2.57%)	91.01% (↓2.70%)	83.98%(†27.47%)	83.57%(†41.18%)	83.91%(†26.74%)	82.54%(†44.65%)	

			Diff	erent Wireless Acces	ss Network Environ	ments	
	Model	θ	4	θ	5	θ ₆	
		AC	F1	AC	F1	AC	F1
	CNN + Rosetta	89.05% (†1.58%)	88.93%(†1.90%)	85.37% (†10.95%)	85.08%(†13.55%)	80.42% (†27.16%)	80.37%(†45.41%)
	SDAE + Rosetta	89.89% (†1.78%)	89.74%(^1.71%)	83.47% (†1.36%)	82.95%(†1.52%)	81.89% (†26.73%)	81.88%(^40.15%)
Significant improvement	LSTM + Posetta	85 370% (13 370%)	82 340%(1115)	82.53% (†11.69%)	78.22%(†10.87%)	76.53% (†22.95%)	73.42%(†37.33%)
	DF + Rosetta	86.84% (\1.16%)	86.53%(↓1.05%)	82.11% (†7.16%)	81.31%(†9.14%	82.63% (†29.26%)	82.57%(†47.57%)
	FS-Net + Rosetta	85.58% (\43.26%)	85.16%(\13.60%)	84.42% (^0.74%)	83.89%(^0.60%)	77.26% (†20.42%)	76.97%(†32.47%)
	Transformer + Rosetta	90.74% (\43.00%)	89.81%(↓1.54%)	89.16% (†3.54%)	88.20%(†5.08%)	81.47% (†27.20%)	79.63%(†32.06%)
	On Average	87.91%(\ 0.12%)	87.09%(\ 0.24%)	84.51%(†5.91%)	83.27%(^6.79%)	80.03%(†25.62%)	79.14%(†39.17%)

Evaluation with Rosetta

• Improvement on real website traffic

			Different Wired Ne	twork Environmen			
Model	· · · · · · · · · · · · · · · · · · ·	τ1	τ	2	1	3	
	AC	F1	AC	F1	AC	F1	
CNN + Rosetta	86.63%(\2.92%)	86.06%(†4.19%)	84.83%(†3.35%)	81.33%(^0.45%)	91.04%(†33.31%)	91.04%(†38.75%)	
SDAE + Rosetta	84.67%(†2.30%)	81.54%(†12.50%)	85.54%(†7.41%)	84. <mark>49%(</mark> †9.70%)	89.47%(†19.43%)	85.87%(†17.07%)	
LSTM + Rosetta	84.17%(†2.32%)	82.07%(†5.48%)	76.01%(↓0.71%)	74.13%(^0.05%)	88.52%(†25.81%)	88.14%(^30.89%)	
DF + Rosetta	90.37%(\0.90%)	90.10%(†5.43%)	85.19%(†1.24%)	81.00%(\0.42%)	90.15%(†6.56%)	90.14%(^6.64%)	Significant improvement
FS-Net + Rosetta	86.99%(†1.18%)	86.47%(^6.66%)	84.83%(†11.81%)	76.24%(†4.04%)	88.41%(†23.99%)	88.40%(†26.43%)	
Transformer + Rosetta	90.02%(†5.17%)	87.93%(†1.74%)	85.36%(†14.39%)	81.37%(†11.80%)	89.70%(†27.04%)	89.69%(†31.23%)	ſ
On Average 87.14%(†1.19%) 85.69%(†2.17%)		83.63%(^6.25%)	79.76% (†4.41%)	89.55%(†22.69%)	88.88%(†25.17%)	Improved in all the wired networks	

			Different Wireless Access Network Environments											
	Model	1	54	τ	5	τ_6								
		AC	F1	AC	F1	AC	F1							
	CNN + Rosetta	77.24%(†4.73%)	75.02%(^6.51%)	83.58%(^16.42%)	82.38%(†22.23%)	75.92%(†5.29%)	70.66%(†1.93%)							
	SDAE + Rosetta	79.10%(†11.06%)	77.54%(†9.56%)	74.31%(†9.74%)	71.18%(^6.98%)	71.95%(†2.01%)	65.80%(†1.79%)							
	LSTM + Rosetta	69.28%(†8.39%)	79.53%(†19.49%)	75.16%(†8.23%)	74.37%(^10.77%)	69.59%(†3.18%)	62.84%(†1.17%)							
	DF + Rosetta	84.13%(†4.23%)	81.67%(^6.67%)	84.19%(†13.52%)	80.48%(^13.56%)	77.58%(†4.55%)	76.10%(†5.93%)							
	FS-Net + Rosetta	77.95%(^7.81%)	74.79%(^6.40%)	75.95%(^11.11%)	72.87%(^7.45%)	72.83%(†5.18%)	67.44%(^0.96%)							
	Transformer + Rosetta	76.84%(†13.13%)	$74.80\%(\uparrow 12.66\%)$	75.66%(\.3.32%)	72.60%(\.2.78%)	76.60%(†15.23%)	70.23%(†10.49%)							
ks -	On Average	77.42%(^8.23%)	77.22%(†10.21%)	78.14%(^9.28%)	75.64%(^9.70%)	74.08%(^5.91%)	68.85% (†3.71%)							

Improved in all the wireless networks

Feature visualization in 2D space

Evaluation on Traffic Augmentation Algorithms

- Compare with other data augmentation methods
 - Random Mask (RM) and Random Shift (RS) in NLP
 - Model: DF

Data Aug.	Different Wired Network Environments								Different Wireless Access Network Environments						On Average	
	θο		θ1		θ ₂		θ ₃		θ ₄		θ5		θ ₆		On Average	
	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1
RM [17]	97.89%	97.80%	89.47%	88.12%	53.26%	11.56%	58.03%	16.47%	78.00%	71.72%	61.58%	34.00%	52.84%	14.44%	70.15%	47.73%
RS [60]	99.79%	99.77%	86.42%	83.09%	56.26%	16.16%	56.13%	21.84%	77.47%	68.53%	58.53%	20.88%	53.16%	16.74%	69.68%	46.72%
Ours	95.16%	95.14%	94.42%	94.39%	86.63%	86.63%	86.01%	85.83%	86.84%	86.53%	82.11%	81.31%	82.63%	82.57%	87.69%	87.49%

Better than other data augmentation methods in most networks

Conclusion

- Mainstream DL models cannot robustly classify TLS encrypted traffic in different network environments.
- Rosetta enables robust TLS encrypted traffic classification by
 - TCP-aware traffic augmentation
 - Traffic invariant extractor
- We improve the encrypted traffic classification performance of existing DL models for replayed and real network traffic.

Thank you and Questions?

Contact: <u>xrj21@mails.tsinghua.edu.cn</u>